ஒரு திசையனை அடிப்படை திசையன்களாக சிதைப்பதற்கான கால்குலேட்டர். அடிப்படை. ஒரு திசையன் திசையன்களாக சிதைவு

Rn,
(பொருளாதாரத்தில் கணிதம்)
  • திசையன் சிதைவு
    திசையன் சிதைவு கூறுகளாக - திசையன் மாற்று செயல்பாடு பல திசையன்கள் ab a2, a3, முதலியன சேர்க்கப்படும் போது ஆரம்ப திசையன் உருவாகிறது ஏ;இந்த வழக்கில், திசையன்கள் db a2, a3, முதலியன திசையன் கூறுகள் என்று அழைக்கப்படுகின்றன. ஏ.வேறு வார்த்தைகளில் கூறுவதானால், எந்த ஒரு சிதைவு...
    (இயற்பியல்)
  • திசையன் அமைப்பின் அடிப்படை மற்றும் தரவரிசை
    திசையன்களின் அமைப்பைக் கவனியுங்கள் (1.18) திசையன் அமைப்பின் அதிகபட்ச சுயாதீன துணை அமைப்பு(1.I8) என்பது இரண்டு நிபந்தனைகளை பூர்த்தி செய்யும் இந்த அமைப்பின் திசையன்களின் பகுதியளவு தொகுப்பாகும்: 1) இந்த தொகுப்பின் திசையன்கள் நேரியல் சார்பற்றவை; 2) அமைப்பின் எந்த வெக்டரும் (1.18) இந்த தொகுப்பின் திசையன்கள் மூலம் நேர்கோட்டில் வெளிப்படுத்தப்படுகிறது.
    (பொருளாதாரத்தில் கணிதம்)
  • திசையன் பிரதிநிதித்துவம் வெவ்வேறு அமைப்புகள்ஒருங்கிணைப்புகள்
    யூனிட் வெக்டர்கள் (i, j, k) மற்றும் (i j", k") ஆகிய இரண்டு ஆர்த்தோகனல் ரெக்டிலினியர் ஒருங்கிணைப்பு அமைப்புகளைக் கருத்தில் கொள்வோம் மற்றும் அவற்றில் திசையன் a ஐப் பிரதிநிதித்துவப்படுத்துவோம். ப்ரைம்களைக் கொண்ட யூனிட் வெக்டார்களை ஒத்திருக்கும் என்று வழக்கமாக வைத்துக்கொள்வோம் புதிய அமைப்புகள் e ஒருங்கிணைப்புகள், மற்றும் பக்கவாதம் இல்லாமல் - பழையது. வெக்டரை பழைய மற்றும் புதிய அமைப்புகளின் அச்சில் விரிவாக்க வடிவில் கற்பனை செய்து பார்க்கலாம்...
  • ஒரு திசையன் ஒரு ஆர்த்தோகனல் அடிப்படையில் சிதைவு
    இடத்தின் அடிப்படையைக் கருத்தில் கொள்வோம் Rn,இதில் ஒவ்வொரு திசையனும் மற்ற அடிப்படை திசையன்களுக்கு ஆர்த்தோகனல் ஆகும்: ஆர்த்தோகனல் தளங்கள் அறியப்படுகின்றன மற்றும் விமானத்திலும் விண்வெளியிலும் நன்கு பிரதிநிதித்துவப்படுத்தப்படுகின்றன (படம் 1.6). ஒரு தன்னிச்சையான திசையன் விரிவாக்கத்தின் ஆயத்தொலைவுகள் தீர்மானிக்கப்படுவதால், இந்த வகை அடிப்படைகள் வசதியாக இருக்கும்.
    (பொருளாதாரத்தில் கணிதம்)
  • திசையன்கள் மற்றும் ஒருங்கிணைப்பு அமைப்புகளில் அவற்றின் பிரதிநிதித்துவங்கள்
    ஒரு திசையன் கருத்து சிலவற்றுடன் தொடர்புடையது உடல் அளவுகள், அவை அவற்றின் தீவிரம் (அளவு) மற்றும் விண்வெளியில் திசை ஆகியவற்றால் வகைப்படுத்தப்படுகின்றன. அத்தகைய அளவுகள், எடுத்துக்காட்டாக, ஒரு பொருள் உடலில் செயல்படும் சக்தி, இந்த உடலின் ஒரு குறிப்பிட்ட புள்ளியின் வேகம், ஒரு பொருள் துகள் முடுக்கம் ...
    (தொடர்ச்சியான இயக்கவியல்: அழுத்தக் கோட்பாடு மற்றும் அடிப்படை மாதிரிகள்)
  • தன்னிச்சையான நீள்வட்ட செயல்பாட்டின் எளிமையான பகுப்பாய்வு பிரதிநிதித்துவங்கள்
    எளிமையான தனிமங்களின் கூட்டுத்தொகையாக நீள்வட்டச் செயல்பாட்டின் பிரதிநிதித்துவம்.விடுங்கள் / (z)எளிய துருவங்கள் jjt கொண்ட வரிசை s இன் நீள்வட்டச் சார்பாகும், $s,காலங்களின் இணையான வரைபடத்தில் பொய். மூலம் குறிக்கிறது பிகேதுருவத்தைப் பொறுத்து செயல்பாட்டைக் கழித்தால், 2 ?l = 0 (§ 1, பத்தி 3, தேற்றம்...
    (ஒரு சிக்கலான மாறியின் செயல்பாடுகளின் கோட்பாட்டின் அறிமுகம்)
  • நேரியல் சார்பு மற்றும் நேரியல் சுதந்திரம்திசையன்கள்.
    திசையன்களின் அடிப்படை. அஃபின் ஒருங்கிணைப்பு அமைப்பு

    ஆடிட்டோரியத்தில் சாக்லேட்டுகளுடன் ஒரு வண்டி உள்ளது, இன்று ஒவ்வொரு பார்வையாளருக்கும் கிடைக்கும் இனிமையான ஜோடிநேரியல் இயற்கணிதத்துடன் கூடிய பகுப்பாய்வு வடிவியல். இந்த கட்டுரை ஒரே நேரத்தில் உயர் கணிதத்தின் இரண்டு பிரிவுகளைத் தொடும், மேலும் அவை ஒரு மடக்குடன் எவ்வாறு இணைந்திருக்கின்றன என்பதைப் பார்ப்போம். ஓய்வெடுங்கள், ட்விக்ஸ் சாப்பிடுங்கள்! ... அடடா, என்ன ஒரு முட்டாள்தனம். இருப்பினும், சரி, நான் மதிப்பெண் பெற மாட்டேன், இறுதியில், நீங்கள் படிப்பதில் நேர்மறையான அணுகுமுறையைக் கொண்டிருக்க வேண்டும்.

    திசையன்களின் நேரியல் சார்பு, நேரியல் திசையன் சுதந்திரம், திசையன் அடிப்படையில்மற்றும் பிற சொற்கள் ஒரு வடிவியல் விளக்கம் மட்டுமல்ல, எல்லாவற்றிற்கும் மேலாக, ஒரு இயற்கணித அர்த்தத்தையும் கொண்டுள்ளது. நேரியல் இயற்கணிதத்தின் பார்வையில் இருந்து "திசையன்" என்ற கருத்து எப்போதும் ஒரு விமானத்தில் அல்லது விண்வெளியில் நாம் சித்தரிக்கக்கூடிய "சாதாரண" திசையன் அல்ல. நீங்கள் ஆதாரத்திற்காக வெகுதூரம் பார்க்க வேண்டியதில்லை, ஐந்து பரிமாண இடத்தின் திசையன் வரைய முயற்சிக்கவும் . அல்லது வானிலை திசையன், நான் Gismeteo க்கு சென்றேன்: முறையே வெப்பநிலை மற்றும் வளிமண்டல அழுத்தம். உதாரணம், நிச்சயமாக, திசையன் இடத்தின் பண்புகளின் பார்வையில் இருந்து தவறானது, இருப்பினும், இந்த அளவுருக்களை ஒரு திசையனாக முறைப்படுத்துவதை யாரும் தடை செய்யவில்லை. இலையுதிர்காலத்தின் சுவாசம்...

    இல்லை, நான் உங்களுக்கு தியரி, லீனியர் வெக்டார் ஸ்பேஸ்கள் மூலம் சலிப்படையப் போவதில்லை, அதுதான் பணி புரியும்வரையறைகள் மற்றும் கோட்பாடுகள். புதிய விதிமுறைகள் (நேரியல் சார்பு, சுதந்திரம், நேரியல் சேர்க்கை, அடிப்படை போன்றவை) இயற்கணிதக் கண்ணோட்டத்தில் அனைத்து திசையன்களுக்கும் பொருந்தும், ஆனால் வடிவியல் எடுத்துக்காட்டுகள் வழங்கப்படும். எனவே, எல்லாம் எளிமையானது, அணுகக்கூடியது மற்றும் தெளிவானது. பகுப்பாய்வு வடிவவியலின் சிக்கல்களுக்கு கூடுதலாக, சில பொதுவான இயற்கணித சிக்கல்களையும் நாங்கள் கருத்தில் கொள்வோம். பொருள் தேர்ச்சி பெற, பாடங்களுடன் உங்களைப் பழக்கப்படுத்துவது நல்லது டம்மிகளுக்கான திசையன்கள்மற்றும் தீர்மானிப்பதை எவ்வாறு கணக்கிடுவது?

    விமான திசையன்களின் நேரியல் சார்பு மற்றும் சுதந்திரம்.
    விமான அடிப்படை மற்றும் இணைப்பு ஒருங்கிணைப்பு அமைப்பு

    உங்களுடைய விமானத்தைக் கவனியுங்கள் கணினி மேசை(வெறும் ஒரு மேசை, படுக்கை மேசை, தரை, கூரை, நீங்கள் விரும்பியது). பணி பின்வரும் செயல்களைக் கொண்டிருக்கும்:

    1) விமானத்தின் அடிப்படையில் தேர்ந்தெடுக்கவும். தோராயமாகச் சொன்னால், டேப்லெப் ஒரு நீளம் மற்றும் அகலத்தைக் கொண்டுள்ளது, எனவே அடிப்படையை உருவாக்க இரண்டு திசையன்கள் தேவைப்படும் என்பது உள்ளுணர்வு. ஒரு திசையன் தெளிவாக போதாது, மூன்று திசையன்கள் மிக அதிகம்.

    2) தேர்ந்தெடுக்கப்பட்ட அடிப்படையில் ஒருங்கிணைப்பு அமைப்பு(ஒருங்கிணைந்த கட்டம்) மேசையில் உள்ள அனைத்து பொருட்களுக்கும் ஆயங்களை ஒதுக்க.

    ஆச்சரியப்பட வேண்டாம், முதலில் விளக்கங்கள் விரல்களில் இருக்கும். மேலும், உங்கள் மீது. தயவு செய்து வைக்கவும் ஆள்காட்டி விரல்இடது கைடேப்லெப்பின் விளிம்பில் அவர் மானிட்டரைப் பார்க்கிறார். இது ஒரு வெக்டராக இருக்கும். இப்போது இடம் சிறிய விரல் வலது கை அதே வழியில் மேசையின் விளிம்பில் - அது மானிட்டர் திரையில் இயக்கப்படும். இது ஒரு வெக்டராக இருக்கும். புன்னகை, நீங்கள் அழகாக இருக்கிறீர்கள்! திசையன்களைப் பற்றி நாம் என்ன சொல்ல முடியும்? தரவு திசையன்கள் கோலினியர், அதாவது நேரியல்ஒருவருக்கொருவர் வெளிப்படுத்தப்படுகிறது:
    , சரி, அல்லது நேர்மாறாக: , பூஜ்ஜியத்திலிருந்து சில எண் வேறுபட்டது.

    இந்த செயலின் படத்தை வகுப்பில் பார்க்கலாம். டம்மிகளுக்கான திசையன்கள், ஒரு வெக்டரை எண்ணால் பெருக்குவதற்கான விதியை விளக்கினேன்.

    உங்கள் விரல்கள் கணினி மேசையின் விமானத்தில் அடிப்படையை அமைக்குமா? வெளிப்படையாக இல்லை. கோலினியர் திசையன்கள் முன்னும் பின்னுமாக பயணிக்கின்றன தனியாகதிசை, மற்றும் ஒரு விமானம் நீளம் மற்றும் அகலம் கொண்டது.

    இத்தகைய திசையன்கள் அழைக்கப்படுகின்றன நேரியல் சார்ந்தது.

    குறிப்பு: "லீனியர்", "லீனியர்" என்ற வார்த்தைகள் உள்ள உண்மையைக் குறிக்கின்றன கணித சமன்பாடுகள், வெளிப்பாடுகளில் சதுரங்கள், கனசதுரங்கள், பிற சக்திகள், மடக்கைகள், சைன்கள் போன்றவை இல்லை. நேரியல் (1st டிகிரி) வெளிப்பாடுகள் மற்றும் சார்புகள் மட்டுமே உள்ளன.

    இரண்டு விமான திசையன்கள் நேரியல் சார்ந்ததுஅவை கோலினியர் என்றால் மட்டுமே.

    0 அல்லது 180 டிகிரியைத் தவிர வேறு எந்த கோணமும் இருக்குமாறு மேஜையில் உங்கள் விரல்களைக் கடக்கவும். இரண்டு விமான திசையன்கள்நேரியல் இல்லைஅவை கோலினியர் இல்லை என்றால் மட்டுமே சார்ந்தது. எனவே, அடிப்படை பெறப்படுகிறது. வெவ்வேறு நீளங்களின் செங்குத்து அல்லாத திசையன்களுடன் அடிப்படை "வளைந்ததாக" மாறியது என்று வெட்கப்பட வேண்டிய அவசியமில்லை. அதன் கட்டுமானத்திற்கு 90 டிகிரி கோணம் மட்டுமல்ல, சம நீளமுள்ள யூனிட் திசையன்கள் மட்டுமல்ல என்பதை மிக விரைவில் பார்ப்போம்.

    ஏதேனும்விமான திசையன் ஒரே வழிஅடிப்படையில் விரிவாக்கப்படுகிறது:
    , உண்மையான எண்கள் எங்கே. எண்கள் அழைக்கப்படுகின்றன திசையன் ஒருங்கிணைப்புகள்இந்த அடிப்படையில்.

    என்றும் கூறப்படுகிறது திசையன்என வழங்கப்பட்டது நேரியல் கலவைஅடிப்படை திசையன்கள். அதாவது, வெளிப்பாடு அழைக்கப்படுகிறது திசையன் சிதைவுஅடிப்படையில்அல்லது நேரியல் கலவைஅடிப்படை திசையன்கள்.

    எடுத்துக்காட்டாக, திசையன் விமானத்தின் ஆர்த்தோநார்மல் அடிப்படையில் சிதைந்துள்ளது என்று நாம் கூறலாம் அல்லது திசையன்களின் நேரியல் கலவையாக இது குறிப்பிடப்படுகிறது என்று கூறலாம்.

    உருவாக்குவோம் அடிப்படையின் வரையறைமுறைப்படி: விமானத்தின் அடிப்படைஒரு ஜோடி நேரியல் சார்பற்ற (கோலினியர் அல்லாத) திசையன்கள் என்று அழைக்கப்படுகிறது, , போது ஏதேனும்ஒரு விமான திசையன் என்பது அடிப்படை திசையன்களின் நேரியல் கலவையாகும்.

    வரையறையின் ஒரு முக்கிய அம்சம் திசையன்கள் எடுக்கப்பட்ட உண்மையாகும் ஒரு குறிப்பிட்ட வரிசையில். அடிப்படைகள் - இவை இரண்டு முற்றிலும் வேறுபட்ட அடிப்படைகள்! அவர்கள் சொல்வது போல், உங்கள் வலது கையின் சிறிய விரலுக்கு பதிலாக உங்கள் இடது கையின் சிறிய விரலை மாற்ற முடியாது.

    நாங்கள் அடிப்படையைக் கண்டுபிடித்துள்ளோம், ஆனால் உங்கள் கணினி மேசையில் உள்ள ஒவ்வொரு உருப்படிக்கும் ஒரு ஒருங்கிணைப்பு கட்டத்தை அமைத்து, ஆயங்களை ஒதுக்குவது போதாது. ஏன் போதாதா? திசையன்கள் இலவசம் மற்றும் முழு விமானம் முழுவதும் அலைந்து திரிகின்றன. காட்டு வார இறுதியில் எஞ்சியிருக்கும் மேஜையில் உள்ள அந்த சிறிய அழுக்கு புள்ளிகளுக்கு ஆயங்களை எவ்வாறு ஒதுக்குவது? ஒரு தொடக்க புள்ளி தேவை. அத்தகைய மைல்கல் அனைவருக்கும் தெரிந்த ஒரு புள்ளி - ஆயத்தொலைவுகளின் தோற்றம். ஒருங்கிணைப்பு அமைப்பைப் புரிந்துகொள்வோம்:

    நான் "பள்ளி" அமைப்பில் தொடங்குவேன். ஏற்கனவே அறிமுக பாடத்தில் டம்மிகளுக்கான திசையன்கள்செவ்வக ஒருங்கிணைப்பு அமைப்புக்கும் ஆர்த்தோநார்மல் அடிப்படைக்கும் உள்ள சில வேறுபாடுகளை நான் எடுத்துரைத்தேன். நிலையான படம் இங்கே:

    அவர்கள் பேசும்போது செவ்வக ஒருங்கிணைப்பு அமைப்பு, பின்னர் பெரும்பாலும் அவை தோற்றம், ஒருங்கிணைப்பு அச்சுகள் மற்றும் அச்சுகளுடன் அளவைக் குறிக்கின்றன. ஒரு தேடுபொறியில் "செவ்வக ஒருங்கிணைப்பு அமைப்பு" என்று தட்டச்சு செய்ய முயற்சிக்கவும், மேலும் பல ஆதாரங்கள் 5-6 ஆம் வகுப்பிலிருந்து நன்கு அறியப்பட்ட ஒருங்கிணைப்பு அச்சுகள் மற்றும் ஒரு விமானத்தில் புள்ளிகளை எவ்வாறு திட்டமிடுவது என்பதைப் பற்றி உங்களுக்குச் சொல்வதை நீங்கள் காண்பீர்கள்.

    மறுபுறம், ஒரு செவ்வக ஒருங்கிணைப்பு அமைப்பை ஒரு ஆர்த்தோநார்மல் அடிப்படையில் முழுமையாக வரையறுக்க முடியும் என்று தெரிகிறது. அதுவும் கிட்டத்தட்ட உண்மைதான். வார்த்தைகள் பின்வருமாறு:

    தோற்றம், மற்றும் ஆர்த்தோநார்மல்அடிப்படை அமைக்கப்பட்டுள்ளது கார்ட்டீசியன் செவ்வக விமான ஒருங்கிணைப்பு அமைப்பு . அதாவது, செவ்வக ஒருங்கிணைப்பு அமைப்பு நிச்சயமாகஒரு புள்ளி மற்றும் இரண்டு யூனிட் ஆர்த்தோகனல் வெக்டார்களால் வரையறுக்கப்படுகிறது. அதனால்தான் நான் மேலே கொடுத்த வரைபடத்தை நீங்கள் காண்கிறீர்கள் - வடிவியல் சிக்கல்களில், திசையன்கள் மற்றும் ஒருங்கிணைப்பு அச்சுகள் இரண்டும் பெரும்பாலும் (ஆனால் எப்போதும் இல்லை) வரையப்படுகின்றன.

    ஒரு புள்ளி (தோற்றம்) மற்றும் ஆர்த்தோநார்மல் அடிப்படையைப் பயன்படுத்துவதை அனைவரும் புரிந்துகொள்கிறார்கள் என்று நினைக்கிறேன் விமானத்தில் எந்த புள்ளியும் மற்றும் விமானத்தில் எந்த திசையனும்ஒருங்கிணைப்புகளை ஒதுக்கலாம். அடையாளப்பூர்வமாகச் சொன்னால், "ஒரு விமானத்தில் உள்ள அனைத்தையும் எண்ணலாம்."

    ஆய வெக்டர்கள் யூனிட்டாக இருக்க வேண்டுமா? இல்லை, அவை தன்னிச்சையான பூஜ்ஜியமற்ற நீளத்தைக் கொண்டிருக்கலாம். தன்னிச்சையான பூஜ்ஜியமற்ற நீளத்தின் ஒரு புள்ளி மற்றும் இரண்டு ஆர்த்தோகனல் திசையன்களைக் கவனியுங்கள்:


    அத்தகைய அடிப்படை அழைக்கப்படுகிறது ஆர்த்தோகனல். திசையன்களுடனான ஒருங்கிணைப்புகளின் தோற்றம் ஒரு ஒருங்கிணைப்பு கட்டத்தால் வரையறுக்கப்படுகிறது, மேலும் விமானத்தின் எந்த புள்ளியும், எந்த திசையனும் கொடுக்கப்பட்ட அடிப்படையில் அதன் ஒருங்கிணைப்புகளைக் கொண்டுள்ளது. உதாரணமாக, அல்லது. வெளிப்படையான சிரமம் என்னவென்றால், ஒருங்கிணைப்பு திசையன்கள் பொது வழக்கில்ஒற்றுமையைத் தவிர வெவ்வேறு நீளங்களைக் கொண்டிருக்கின்றன. நீளம் ஒற்றுமைக்கு சமமாக இருந்தால், வழக்கமான ஆர்த்தோநார்மல் அடிப்படை பெறப்படுகிறது.

    ! குறிப்பு : ஆர்த்தோகனல் அடிப்படையில், அதே போல் கீழே உள்ள விமானம் மற்றும் இடத்தின் இணைப்புத் தளங்களில், அச்சுகளுடன் கூடிய அலகுகள் கருதப்படுகின்றன. நிபந்தனைக்குட்பட்டது. எடுத்துக்காட்டாக, x- அச்சில் உள்ள ஒரு அலகு 4 செ.மீ., ஆர்டினேட் அச்சில் ஒரு அலகு 2 செ.மீ., தேவைப்பட்டால், "தரமற்ற" ஆயங்களை "எங்கள் வழக்கமான சென்டிமீட்டர்களாக" மாற்ற போதுமானது.

    இரண்டாவது கேள்வி, உண்மையில் ஏற்கனவே பதிலளிக்கப்பட்டுள்ளது, அடிப்படை திசையன்களுக்கு இடையிலான கோணம் 90 டிகிரிக்கு சமமாக இருக்க வேண்டுமா? இல்லை! வரையறை கூறுவது போல், அடிப்படை திசையன்கள் இருக்க வேண்டும் கோலினியர் அல்லாதது மட்டுமே. அதன்படி, கோணம் 0 மற்றும் 180 டிகிரி தவிர வேறு எதுவும் இருக்கலாம்.

    விமானத்தில் ஒரு புள்ளி என்று அழைக்கப்படுகிறது தோற்றம், மற்றும் கோலினியர் அல்லாததிசையன்கள், , அமைக்கப்பட்டது அஃபைன் விமான ஒருங்கிணைப்பு அமைப்பு :


    சில நேரங்களில் அத்தகைய ஒருங்கிணைப்பு அமைப்பு அழைக்கப்படுகிறது சாய்ந்தஅமைப்பு. எடுத்துக்காட்டுகளாக, வரைபடம் புள்ளிகள் மற்றும் திசையன்களைக் காட்டுகிறது:

    நீங்கள் புரிந்துகொண்டபடி, பாடத்தின் இரண்டாம் பகுதியில் நாங்கள் விவாதித்த திசையன்கள் மற்றும் பிரிவுகளின் நீளத்திற்கான சூத்திரங்கள் அஃபைன் ஒருங்கிணைப்பு அமைப்பு இன்னும் குறைவாகவே உள்ளது; டம்மிகளுக்கான திசையன்கள், தொடர்பான பல சுவையான சூத்திரங்கள் திசையன்களின் அளவிடல் தயாரிப்பு. ஆனால் திசையன்களைச் சேர்ப்பதற்கும் ஒரு திசையனை எண்ணால் பெருக்குவதற்கும் விதிகள், இந்த உறவில் ஒரு பகுதியைப் பிரிப்பதற்கான சூத்திரங்கள் மற்றும் சில வகையான சிக்கல்கள் விரைவில் நாங்கள் கருத்தில் கொள்வோம்.

    மேலும் முடிவு என்னவென்றால், அஃபைன் ஒருங்கிணைப்பு அமைப்பின் மிகவும் வசதியான சிறப்பு வழக்கு கார்ட்டீசியன் செவ்வக அமைப்பு ஆகும். அதனால்தான் நீங்கள் அவளை அடிக்கடி பார்க்க வேண்டும், என் அன்பே. ...இருப்பினும், இந்த வாழ்க்கையில் உள்ள அனைத்தும் உறவினர் - பல சூழ்நிலைகளில் ஒரு சாய்ந்த கோணம் (அல்லது வேறு ஏதாவது, எடுத்துக்காட்டாக, துருவ) ஒருங்கிணைப்பு அமைப்பு. மனித உருவங்கள் அத்தகைய அமைப்புகளை விரும்பலாம் =)

    நடைமுறை பகுதிக்கு செல்லலாம். அனைத்து பணிகளும் இந்த பாடம்செவ்வக ஒருங்கிணைப்பு அமைப்பு மற்றும் பொதுவான அஃபைன் வழக்கு ஆகிய இரண்டிற்கும் செல்லுபடியாகும். இங்கே சிக்கலான எதுவும் இல்லை;

    விமான திசையன்களின் கோலினரிட்டியை எவ்வாறு தீர்மானிப்பது?

    வழக்கமான விஷயம். இரண்டு விமான திசையன்கள் பொருட்டு கோலினியர் ஆனது, அவற்றின் தொடர்புடைய ஆயங்கள் விகிதாசாரமாக இருப்பது அவசியம் மற்றும் போதுமானதுஅடிப்படையில், இது வெளிப்படையான உறவின் ஒருங்கிணைப்பு மூலம் ஒருங்கிணைப்பு விவரம்.

    எடுத்துக்காட்டு 1

    அ) திசையன்கள் கோலினியர் என்பதை சரிபார்க்கவும் .
    b) திசையன்கள் ஒரு அடிப்படையை உருவாக்குகின்றனவா? ?

    தீர்வு:
    a) திசையன்கள் உள்ளதா என்பதைக் கண்டுபிடிப்போம் விகிதாச்சார குணகம், அதாவது சமத்துவங்கள் திருப்தி அடையும்:

    இந்த விதியைப் பயன்படுத்துவதற்கான "ஃபோப்பிஷ்" பதிப்பைப் பற்றி நான் நிச்சயமாக உங்களுக்குச் சொல்வேன், இது நடைமுறையில் நன்றாக வேலை செய்கிறது. விகிதாச்சாரத்தை உடனடியாக உருவாக்கி, அது சரியானதா என்பதைப் பார்க்க வேண்டும் என்பது யோசனை:

    திசையன்களின் தொடர்புடைய ஆயங்களின் விகிதங்களிலிருந்து ஒரு விகிதத்தை உருவாக்குவோம்:

    சுருக்கிக் கொள்வோம்:
    , இதனால் தொடர்புடைய ஆயங்கள் விகிதாசாரமாகும், எனவே,

    உறவை வேறு வழியில் செய்யலாம், இது ஒரு சமமான விருப்பமாகும்:

    சுய-சோதனைக்கு, கோலினியர் திசையன்கள் ஒருவருக்கொருவர் நேரியல் முறையில் வெளிப்படுத்தப்படுகின்றன என்ற உண்மையை நீங்கள் பயன்படுத்தலாம். இந்த வழக்கில், சமத்துவம் நடைபெறுகிறது . வெக்டார்களுடன் அடிப்படை செயல்பாடுகள் மூலம் அவற்றின் செல்லுபடியை எளிதாக சரிபார்க்கலாம்:

    b) இரண்டு விமான திசையன்கள் கோலினியர் (நேரியல் சார்பற்ற) இல்லை என்றால் ஒரு அடிப்படையை உருவாக்குகின்றன. கோலினரிட்டிக்காக வெக்டார்களை ஆய்வு செய்கிறோம் . ஒரு அமைப்பை உருவாக்குவோம்:

    முதல் சமன்பாட்டில் இருந்து அது பின்வருமாறு, இரண்டாவது சமன்பாட்டில் இருந்து அது பின்வருமாறு, அதாவது அமைப்பு சீரற்றது(தீர்வுகள் இல்லை). எனவே, திசையன்களின் தொடர்புடைய ஆயங்கள் விகிதாசாரமாக இல்லை.

    முடிவுரை: திசையன்கள் நேரியல் சார்பற்றவை மற்றும் அடிப்படையை உருவாக்குகின்றன.

    தீர்வின் எளிமைப்படுத்தப்பட்ட பதிப்பு இதுபோல் தெரிகிறது:

    திசையன்களின் தொடர்புடைய ஒருங்கிணைப்புகளிலிருந்து ஒரு விகிதத்தை உருவாக்குவோம் :
    , அதாவது இந்த திசையன்கள் நேரியல் சார்பற்றவை மற்றும் அடிப்படையை உருவாக்குகின்றன.

    வழக்கமாக இந்த விருப்பம் மதிப்பாய்வாளர்களால் நிராகரிக்கப்படுவதில்லை, ஆனால் சில ஆயத்தொலைவுகள் பூஜ்ஜியத்திற்கு சமமாக இருக்கும் சந்தர்ப்பங்களில் ஒரு சிக்கல் எழுகிறது. இது போல்: . அல்லது இப்படி: . அல்லது இப்படி: . இங்கே விகிதாச்சாரத்தில் எவ்வாறு வேலை செய்வது? (உண்மையில், நீங்கள் பூஜ்ஜியத்தால் வகுக்க முடியாது). இந்த காரணத்திற்காகவே நான் எளிமைப்படுத்தப்பட்ட தீர்வை "ஃபோப்பிஷ்" என்று அழைத்தேன்.

    பதில்: a) , b) படிவம்.

    ஒரு சிறிய படைப்பு உதாரணம் சுதந்திரமான முடிவு:

    எடுத்துக்காட்டு 2

    அளவுருவின் எந்த மதிப்பில் திசையன்கள் உள்ளன அவை இணையாக இருக்குமா?

    மாதிரி தீர்வில், அளவுரு விகிதத்தின் மூலம் காணப்படுகிறது.

    கோலினரிட்டிக்கான திசையன்களைச் சரிபார்க்க ஒரு நேர்த்தியான இயற்கணித வழி உள்ளது, மேலும் அதை ஐந்தாவது புள்ளியாகச் சேர்ப்போம்:

    இரண்டு விமான திசையன்களுக்கு பின்வரும் அறிக்கைகள் சமமானவை:

    2) திசையன்கள் ஒரு அடிப்படையை உருவாக்குகின்றன;
    3) திசையன்கள் கோலினியர் அல்ல;

    + 5) இந்த திசையன்களின் ஆயத்தொகுப்புகளால் ஆன தீர்மானிப்பான் பூஜ்ஜியமற்றது.

    முறையே, பின்வரும் எதிர் அறிக்கைகள் சமமானவை:
    1) திசையன்கள் நேரியல் சார்ந்தது;
    2) திசையன்கள் ஒரு அடிப்படையை உருவாக்கவில்லை;
    3) திசையன்கள் கோலினியர்;
    4) திசையன்கள் ஒருவருக்கொருவர் நேர்கோட்டில் வெளிப்படுத்தப்படலாம்;
    + 5) இந்த திசையன்களின் ஆயத்தொகுப்புகளால் ஆன தீர்மானம் பூஜ்ஜியத்திற்கு சமம்.

    நீங்கள் சந்தித்த அனைத்து விதிமுறைகள் மற்றும் அறிக்கைகளை நீங்கள் ஏற்கனவே புரிந்துகொண்டிருப்பீர்கள் என்று நான் உண்மையிலேயே நம்புகிறேன்.

    புதிய, ஐந்தாவது புள்ளியை இன்னும் விரிவாகப் பார்ப்போம்: இரண்டு விமான திசையன்கள் கொடுக்கப்பட்ட திசையன்களின் ஆயத்தொகுப்புகளால் ஆன நிர்ணயம் பூஜ்ஜியத்திற்கு சமமாக இருந்தால் மட்டுமே கோலினியர் ஆகும்:. இந்த அம்சத்தைப் பயன்படுத்த, நிச்சயமாக, உங்களால் முடியும் தீர்மானிப்பவர்களைக் கண்டறியவும்.

    முடிவு செய்வோம்எடுத்துக்காட்டு 1 இரண்டாவது வழியில்:

    a) திசையன்களின் ஆயத்தொகுதிகளால் உருவாக்கப்பட்ட தீர்மானிப்பதைக் கணக்கிடுவோம் :
    , அதாவது இந்த திசையன்கள் கோலினியர்.

    b) இரண்டு விமான திசையன்கள் கோலினியர் (நேரியல் சார்பற்ற) இல்லை என்றால் ஒரு அடிப்படையை உருவாக்குகின்றன. வெக்டார் ஆயத்தொலைவுகளால் உருவாக்கப்பட்ட தீர்மானிப்பதைக் கணக்கிடுவோம் :
    , அதாவது திசையன்கள் நேரியல் சார்பற்றவை மற்றும் அடிப்படையை உருவாக்குகின்றன.

    பதில்: a) , b) படிவம்.

    விகிதாச்சாரத்துடன் கூடிய தீர்வை விட இது மிகவும் கச்சிதமாகவும் அழகாகவும் தெரிகிறது.

    கருதப்படும் பொருளின் உதவியுடன், திசையன்களின் கோலினரிட்டியை நிறுவுவது மட்டுமல்லாமல், பிரிவுகள் மற்றும் நேர் கோடுகளின் இணையான தன்மையை நிரூபிக்கவும் முடியும். குறிப்பிட்ட வடிவியல் வடிவங்களில் உள்ள சில சிக்கல்களைக் கருத்தில் கொள்வோம்.

    எடுத்துக்காட்டு 3

    ஒரு நாற்கரத்தின் முனைகள் கொடுக்கப்பட்டுள்ளன. ஒரு நாற்கரமானது ஒரு இணையான வரைபடம் என்பதை நிரூபிக்கவும்.

    ஆதாரம்: சிக்கலில் ஒரு வரைபடத்தை உருவாக்க வேண்டிய அவசியமில்லை, ஏனெனில் தீர்வு முற்றிலும் பகுப்பாய்வு சார்ந்ததாக இருக்கும். இணையான வரைபடத்தின் வரையறையை நினைவில் கொள்வோம்:
    இணை வரைபடம் எதிர் பக்கங்கள் ஜோடியாக இணையாக இருக்கும் நாற்கரம் என்று அழைக்கப்படுகிறது.

    எனவே, நிரூபிக்க வேண்டியது அவசியம்:
    1) எதிர் பக்கங்களின் இணையாக மற்றும்;
    2) எதிர் பக்கங்களின் இணையாக மற்றும்.

    நாங்கள் நிரூபிக்கிறோம்:

    1) திசையன்களைக் கண்டறியவும்:


    2) திசையன்களைக் கண்டறியவும்:

    இதன் விளைவாக அதே திசையன் ("பள்ளியின் படி" - சம திசையன்கள்). கூட்டுத்தன்மை மிகவும் வெளிப்படையானது, ஆனால் ஏற்பாட்டுடன் முடிவை தெளிவாக முறைப்படுத்துவது நல்லது. திசையன் ஆயத்தொகுப்புகளால் ஆன தீர்மானிப்பதைக் கணக்கிடுவோம்:
    , அதாவது இந்த திசையன்கள் கோலினியர் மற்றும் .

    முடிவுரை: ஒரு நாற்கரத்தின் எதிர் பக்கங்கள் ஜோடிகளில் இணையாக உள்ளன, அதாவது இது வரையறையின்படி ஒரு இணையான வரைபடம். கே.இ.டி.

    மேலும் நல்ல மற்றும் வேறுபட்ட புள்ளிவிவரங்கள்:

    எடுத்துக்காட்டு 4

    ஒரு நாற்கரத்தின் முனைகள் கொடுக்கப்பட்டுள்ளன. ஒரு நாற்கரமானது ஒரு ட்ரேப்சாய்டு என்பதை நிரூபிக்கவும்.

    ஆதாரத்தின் மிகவும் கடுமையான உருவாக்கத்திற்கு, ட்ரெப்சாய்டின் வரையறையைப் பெறுவது நல்லது, ஆனால் அது எப்படி இருக்கும் என்பதை நினைவில் வைத்துக் கொள்வது போதுமானது.

    இது நீங்களே தீர்க்க வேண்டிய பணி. முழுமையான தீர்வுபாடத்தின் முடிவில்.

    இப்போது மெதுவாக விமானத்திலிருந்து விண்வெளிக்கு செல்ல வேண்டிய நேரம் இது:

    விண்வெளி திசையன்களின் கோலினரிட்டியை எவ்வாறு தீர்மானிப்பது?

    விதி மிகவும் ஒத்திருக்கிறது. இரண்டு விண்வெளி திசையன்கள் கோலினியர் ஆக இருக்க, அவற்றுடன் தொடர்புடைய ஆயங்கள் விகிதாசாரமாக இருப்பது அவசியம் மற்றும் போதுமானது..

    எடுத்துக்காட்டு 5

    பின்வரும் விண்வெளி திசையன்கள் கோலினியர் உள்ளதா என்பதைக் கண்டறியவும்:

    A) ;
    b)
    V)

    தீர்வு:
    a) திசையன்களின் தொடர்புடைய ஆயங்களுக்கு விகிதாச்சாரத்தின் குணகம் உள்ளதா என்பதைச் சரிபார்க்கவும்:

    கணினிக்கு தீர்வு இல்லை, அதாவது திசையன்கள் கோலினியர் அல்ல.

    விகிதத்தை சரிபார்ப்பதன் மூலம் "எளிமைப்படுத்தப்பட்டது" முறைப்படுத்தப்படுகிறது. இந்த வழக்கில்:
    - தொடர்புடைய ஆயங்கள் விகிதாசாரமாக இல்லை, அதாவது திசையன்கள் கோலினியர் அல்ல.

    பதில்:திசையன்கள் கோலினியர் அல்ல.

    b-c) இவை சுயாதீனமான முடிவிற்கான புள்ளிகள். இரண்டு வழிகளில் முயற்சிக்கவும்.

    மூன்றாம் வரிசை தீர்மானிப்பான் மூலம் இடஞ்சார்ந்த திசையன்களை சரிபார்க்க ஒரு முறை உள்ளது; திசையன்களின் திசையன் தயாரிப்பு.

    ப்ளேன் கேஸைப் போலவே, இடஞ்சார்ந்த பிரிவுகள் மற்றும் நேர் கோடுகளின் இணையான தன்மையைப் படிக்க கருதப்படும் கருவிகளைப் பயன்படுத்தலாம்.

    இரண்டாவது பகுதிக்கு வரவேற்கிறோம்:

    முப்பரிமாண இடத்தில் திசையன்களின் நேரியல் சார்பு மற்றும் சுதந்திரம்.
    இடஞ்சார்ந்த அடிப்படை மற்றும் இணைப்பு ஒருங்கிணைப்பு அமைப்பு

    விமானத்தில் நாங்கள் ஆய்வு செய்த பல வடிவங்கள் விண்வெளிக்கு செல்லுபடியாகும். தகவல்களில் சிங்கத்தின் பங்கு ஏற்கனவே மெல்லப்பட்டுவிட்டதால், கோட்பாடு குறிப்புகளை குறைக்க முயற்சித்தேன். இருப்பினும், புதிய விதிமுறைகள் மற்றும் கருத்துகள் தோன்றும் என்பதால், அறிமுகப் பகுதியை கவனமாகப் படிக்குமாறு பரிந்துரைக்கிறேன்.

    இப்போது, ​​கணினி மேசையின் விமானத்திற்குப் பதிலாக, முப்பரிமாண இடத்தை ஆராய்வோம். முதலில், அதன் அடிப்படையை உருவாக்குவோம். யாரோ இப்போது வீட்டிற்குள் இருக்கிறார்கள், யாரோ வெளியில் இருக்கிறார்கள், ஆனால் எப்படியிருந்தாலும், அகலம், நீளம் மற்றும் உயரம் என்ற முப்பரிமாணத்திலிருந்து நாம் தப்பிக்க முடியாது. எனவே, ஒரு அடிப்படையை உருவாக்க, மூன்று இடஞ்சார்ந்த திசையன்கள் தேவைப்படும். ஒன்று அல்லது இரண்டு திசையன்கள் போதாது, நான்காவது மிதமிஞ்சியது.

    மீண்டும் நாம் விரல்களில் சூடுபடுத்துகிறோம். தயவு செய்து உங்கள் கையை உயர்த்தி விரிக்கவும் வெவ்வேறு பக்கங்கள் கட்டைவிரல், குறியீட்டு மற்றும் நடு விரல் . இவை திசையன்களாக இருக்கும், அவை வெவ்வேறு திசைகளில் பார்க்கின்றன, வெவ்வேறு நீளங்களைக் கொண்டுள்ளன மற்றும் தங்களுக்கு இடையே வெவ்வேறு கோணங்களைக் கொண்டுள்ளன. வாழ்த்துக்கள், முப்பரிமாண இடத்தின் அடிப்படை தயாராக உள்ளது! மூலம், ஆசிரியர்களுக்கு இதை நிரூபிக்க வேண்டிய அவசியமில்லை, நீங்கள் எவ்வளவு கடினமாக உங்கள் விரல்களைத் திருப்பினாலும், வரையறைகளிலிருந்து தப்பிக்க முடியாது =)

    அடுத்து, ஒரு முக்கியமான கேள்வியைக் கேட்போம்: எந்த மூன்று திசையன்களும் முப்பரிமாண இடத்தின் அடிப்படையை உருவாக்குகின்றன? கம்ப்யூட்டர் மேசையின் மேல் மூன்று விரல்களை உறுதியாக அழுத்தவும். என்ன நடந்தது? மூன்று திசையன்கள் ஒரே விமானத்தில் அமைந்துள்ளன, தோராயமாக பேசினால், பரிமாணங்களில் ஒன்றை இழந்துவிட்டோம் - உயரம். அத்தகைய திசையன்கள் கோப்ளனார்மேலும், முப்பரிமாண இடத்தின் அடிப்படை உருவாக்கப்படவில்லை என்பது மிகவும் வெளிப்படையானது.

    கோப்லானர் திசையன்கள் ஒரே விமானத்தில் இருக்க வேண்டியதில்லை, அவை இணையான விமானங்களில் இருக்கலாம் (இதை உங்கள் விரல்களால் செய்ய வேண்டாம், சால்வடார் டாலி மட்டுமே இதைச் செய்தார் =)).

    வரையறை: திசையன்கள் அழைக்கப்படுகின்றன கோப்ளனார், அவர்கள் இணையாக இருக்கும் விமானம் இருந்தால். அத்தகைய விமானம் இல்லை என்றால், திசையன்கள் கோப்லனர் ஆகாது என்பதை இங்கே சேர்ப்பது தர்க்கரீதியானது.

    மூன்று கோப்லனர் திசையன்கள் எப்போதும் நேரியல் சார்ந்து இருக்கும், அதாவது, அவை ஒன்றோடொன்று நேர்கோட்டில் வெளிப்படுத்தப்படுகின்றன. எளிமைக்காக, அவர்கள் ஒரே விமானத்தில் கிடப்பதை மீண்டும் கற்பனை செய்வோம். முதலாவதாக, திசையன்கள் கோப்லனர் மட்டுமல்ல, அவை கோலினியராகவும் இருக்கலாம், பின்னர் எந்த திசையனையும் எந்த திசையன் மூலமாகவும் வெளிப்படுத்தலாம். இரண்டாவது வழக்கில், எடுத்துக்காட்டாக, திசையன்கள் கோலினியர் இல்லை என்றால், மூன்றாவது திசையன் அவற்றின் மூலம் தனித்துவமான முறையில் வெளிப்படுத்தப்படுகிறது: (மற்றும் முந்தைய பிரிவில் உள்ள பொருட்களிலிருந்து ஏன் யூகிக்க எளிதானது).

    உரையாடலும் உண்மைதான்: மூன்று கோப்லானர் அல்லாத திசையன்கள் எப்போதும் நேரியல் சார்புடையவை, அதாவது, அவை எந்த வகையிலும் ஒருவருக்கொருவர் வெளிப்படுத்தப்படவில்லை. மேலும், வெளிப்படையாக, அத்தகைய திசையன்கள் மட்டுமே முப்பரிமாண இடத்தின் அடிப்படையை உருவாக்க முடியும்.

    வரையறை: முப்பரிமாண இடத்தின் அடிப்படைநேரியல் சார்பற்ற (கோப்லானர் அல்லாத) திசையன்களின் மூன்று மடங்கு என்று அழைக்கப்படுகிறது, ஒரு குறிப்பிட்ட வரிசையில் எடுக்கப்பட்டது, மற்றும் இடத்தின் எந்த திசையன் ஒரே வழிகொடுக்கப்பட்ட அடிப்படையில் சிதைக்கப்படுகிறது, இந்த அடிப்படையில் திசையன் ஆயத்தொலைவுகள் எங்கே உள்ளன

    திசையன் வடிவத்தில் குறிப்பிடப்படுகிறது என்றும் சொல்லலாம் என்பதை நினைவூட்டுகிறேன் நேரியல் கலவைஅடிப்படை திசையன்கள்.

    ஒரு ஆய அமைப்பின் கருத்து ஒரு புள்ளி மற்றும் எந்த மூன்று நேரியல் போன்ற அதே வழியில் அறிமுகப்படுத்தப்பட்டது சுயாதீன திசையன்கள்:

    தோற்றம், மற்றும் அல்லாத கோப்ளனார்திசையன்கள், ஒரு குறிப்பிட்ட வரிசையில் எடுக்கப்பட்டது, அமைக்கப்பட்டது முப்பரிமாண இடத்தின் affine coordinate அமைப்பு :

    நிச்சயமாக, ஒருங்கிணைப்பு கட்டம் "சாய்ந்த" மற்றும் சிரமமாக உள்ளது, இருப்பினும், கட்டமைக்கப்பட்ட ஒருங்கிணைப்பு அமைப்பு நம்மை அனுமதிக்கிறது நிச்சயமாகஎந்த திசையன் மற்றும் விண்வெளியில் எந்த புள்ளியின் ஆயத்தொலைவுகளையும் தீர்மானிக்கவும். ஒரு விமானத்தைப் போலவே, நான் ஏற்கனவே குறிப்பிட்டுள்ள சில சூத்திரங்கள் விண்வெளியின் அஃபைன் ஒருங்கிணைப்பு அமைப்பில் வேலை செய்யாது.

    ஒரு அஃபைன் ஒருங்கிணைப்பு அமைப்பின் மிகவும் பரிச்சயமான மற்றும் வசதியான சிறப்பு வழக்கு, எல்லோரும் யூகிப்பது போல, செவ்வக விண்வெளி ஒருங்கிணைப்பு அமைப்பு:

    விண்வெளியில் ஒரு புள்ளி என்று அழைக்கப்படுகிறது தோற்றம், மற்றும் ஆர்த்தோநார்மல்அடிப்படை அமைக்கப்பட்டுள்ளது கார்ட்டீசியன் செவ்வக விண்வெளி ஒருங்கிணைப்பு அமைப்பு . தெரிந்த படம்:

    நடைமுறைப் பணிகளுக்குச் செல்வதற்கு முன், தகவலை மீண்டும் முறைப்படுத்துவோம்:

    மூன்று விண்வெளி திசையன்களுக்கு பின்வரும் அறிக்கைகள் சமமானவை:
    1) திசையன்கள் நேரியல் சார்பற்றவை;
    2) திசையன்கள் ஒரு அடிப்படையை உருவாக்குகின்றன;
    3) திசையன்கள் கோப்லனர் அல்ல;
    4) திசையன்களை ஒருவருக்கொருவர் நேர்கோட்டில் வெளிப்படுத்த முடியாது;
    5) இந்த திசையன்களின் ஆயத்தொகுப்புகளால் ஆன தீர்மானிப்பான் பூஜ்ஜியத்திலிருந்து வேறுபட்டது.

    எதிர் அறிக்கைகள் புரியும் என்று நினைக்கிறேன்.

    விண்வெளி திசையன்களின் நேரியல் சார்பு/சுதந்திரம் பாரம்பரியமாக ஒரு தீர்மானியைப் பயன்படுத்தி சரிபார்க்கப்படுகிறது (புள்ளி 5). மீதமுள்ள நடைமுறை பணிகள் உச்சரிக்கப்படும் இயற்கணித இயல்புடையதாக இருக்கும். வடிவியல் குச்சியைத் தொங்கவிட்டு, நேரியல் இயற்கணிதத்தின் பேஸ்பால் மட்டையைப் பயன்படுத்த வேண்டிய நேரம் இது:

    விண்வெளியின் மூன்று திசையன்கள்கொடுக்கப்பட்ட திசையன்களின் ஆயத்தொகுப்புகளால் ஆன நிர்ணயம் பூஜ்ஜியத்திற்கு சமமாக இருந்தால் மட்டுமே கோப்லனர் ஆகும்: .

    ஒரு சிறிய தொழில்நுட்ப நுணுக்கத்திற்கு உங்கள் கவனத்தை ஈர்க்க விரும்புகிறேன்: திசையன்களின் ஆயத்தொலைவுகளை நெடுவரிசைகளில் மட்டுமல்ல, வரிசைகளிலும் எழுதலாம் (இதன் காரணமாக தீர்மானிப்பவரின் மதிப்பு மாறாது - தீர்மானிப்பவர்களின் பண்புகளைப் பார்க்கவும்). ஆனால் நெடுவரிசைகளில் இது மிகவும் சிறந்தது, ஏனெனில் சில நடைமுறை சிக்கல்களைத் தீர்ப்பதற்கு இது மிகவும் பயனுள்ளதாக இருக்கும்.

    தீர்மானிப்பவர்களைக் கணக்கிடும் முறைகளைக் கொஞ்சம் மறந்துவிட்ட அல்லது அவற்றைப் பற்றிய புரிதல் இல்லாத வாசகர்களுக்கு, எனது பழமையான பாடங்களில் ஒன்றைப் பரிந்துரைக்கிறேன்: தீர்மானிப்பதை எவ்வாறு கணக்கிடுவது?

    எடுத்துக்காட்டு 6

    பின்வரும் திசையன்கள் முப்பரிமாண இடத்தின் அடிப்படையை உருவாக்குகின்றனவா என்பதைச் சரிபார்க்கவும்:

    தீர்வு: உண்மையில், முழு தீர்வும் தீர்மானிப்பதைக் கணக்கிடுகிறது.

    a) திசையன்களின் ஆயத்தொகுப்புகளால் உருவாக்கப்பட்ட தீர்மானிப்பதைக் கணக்கிடுவோம் (தீர்மானி முதல் வரியில் வெளிப்படுத்தப்படுகிறது):

    , அதாவது திசையன்கள் நேரியல் சார்பற்றவை (கோப்லனர் அல்ல) மற்றும் முப்பரிமாண இடத்தின் அடிப்படையை உருவாக்குகின்றன.

    பதில்: இந்த திசையன்கள் ஒரு அடிப்படையை உருவாக்குகின்றன

    b) இது சுயாதீனமான முடிவிற்கான ஒரு புள்ளியாகும். பாடத்தின் முடிவில் முழுமையான தீர்வு மற்றும் பதில்.

    ஆக்கபூர்வமான பணிகளும் உள்ளன:

    எடுத்துக்காட்டு 7

    அளவுருவின் எந்த மதிப்பில் திசையன்கள் கோப்லனராக இருக்கும்?

    தீர்வு: இந்த திசையன்களின் ஆயத்தொகுப்புகளால் ஆன நிர்ணயம் பூஜ்ஜியத்திற்கு சமமாக இருந்தால் மட்டுமே திசையன்கள் கோப்லனர் ஆகும்:

    அடிப்படையில், நீங்கள் ஒரு தீர்மானிப்பாளருடன் ஒரு சமன்பாட்டை தீர்க்க வேண்டும். ஜெர்போவாஸில் காத்தாடிகள் போன்ற பூஜ்ஜியங்களை நாங்கள் கீழே தள்ளுகிறோம் - இரண்டாவது வரியில் தீர்மானிப்பதைத் திறந்து, மைனஸ்களை உடனடியாக அகற்றுவது சிறந்தது:

    நாங்கள் மேலும் எளிமைப்படுத்தல்களைச் செய்து, விஷயத்தை எளிமையானதாகக் குறைக்கிறோம் நேரியல் சமன்பாடு:

    பதில்: மணிக்கு

    இதைச் செய்ய, இங்கே சரிபார்ப்பது எளிது, இதன் விளைவாக வரும் மதிப்பை அசல் தீர்மானிப்பதில் மாற்ற வேண்டும் , மீண்டும் திறக்கிறது.

    முடிவில், மற்றொரு பொதுவான சிக்கலைப் பார்ப்போம், இது இயற்கையில் மிகவும் இயற்கணிதமானது மற்றும் பாரம்பரியமாக நேரியல் இயற்கணித பாடத்திட்டத்தில் சேர்க்கப்பட்டுள்ளது. இது மிகவும் பொதுவானது, இது அதன் சொந்த தலைப்புக்கு தகுதியானது:

    3 திசையன்கள் முப்பரிமாண இடத்தின் அடிப்படையை உருவாக்குகின்றன என்பதை நிரூபிக்கவும்
    இந்த அடிப்படையில் 4 வது திசையன் ஆயங்களை கண்டறியவும்

    எடுத்துக்காட்டு 8

    திசையன்கள் கொடுக்கப்பட்டுள்ளன. திசையன்கள் முப்பரிமாண இடைவெளியில் ஒரு அடிப்படையை உருவாக்குகின்றன என்பதைக் காட்டுங்கள் மற்றும் இந்த அடிப்படையில் திசையன்களின் ஒருங்கிணைப்புகளைக் கண்டறியவும்.

    தீர்வு: முதலில், நிலைமையைச் சமாளிப்போம். நிபந்தனையின்படி, நான்கு திசையன்கள் கொடுக்கப்பட்டுள்ளன, நீங்கள் பார்க்க முடியும் என, அவை ஏற்கனவே சில அடிப்படையில் ஆயத்தொலைவுகளைக் கொண்டுள்ளன. இந்த அடிப்படை என்ன என்பது எங்களுக்கு ஆர்வமாக இல்லை. பின்வரும் விஷயம் ஆர்வமாக உள்ளது: மூன்று திசையன்கள் ஒரு புதிய அடிப்படையை உருவாக்கலாம். முதல் நிலை எடுத்துக்காட்டு 6 இன் தீர்வுடன் முற்றிலும் ஒத்துப்போகிறது, திசையன்கள் உண்மையிலேயே நேரியல் ரீதியாக சுயாதீனமாக உள்ளதா என்பதைச் சரிபார்க்க வேண்டியது அவசியம்:

    திசையன் ஆயத்தொகுப்புகளால் ஆன தீர்மானிப்பதைக் கணக்கிடுவோம்:

    , அதாவது திசையன்கள் நேரியல் சார்பற்றவை மற்றும் முப்பரிமாண இடத்தின் அடிப்படையை உருவாக்குகின்றன.

    ! முக்கியமானது : திசையன் ஒருங்கிணைப்புகள் அவசியம்எழுது நெடுவரிசைகளாகநிர்ணயம், சரங்களில் இல்லை. இல்லையெனில், மேலும் தீர்வு அல்காரிதத்தில் குழப்பம் ஏற்படும்.

    எல். 2-1 திசையன் இயற்கணிதத்தின் அடிப்படைக் கருத்துக்கள். திசையன்கள் மீது நேரியல் செயல்பாடுகள்.

    அடிப்படையில் ஒரு திசையன் சிதைவு.

    திசையன் இயற்கணிதத்தின் அடிப்படைக் கருத்துக்கள்

    திசையன் என்பது ஒரே நீளம் மற்றும் திசையைக் கொண்ட அனைத்து இயக்கப்பட்ட பிரிவுகளின் தொகுப்பாகும்
    .


    பண்புகள்:


    திசையன்களில் நேரியல் செயல்பாடுகள்

    1.

    இணை வரைபடம் விதி:

    உடன் உம்மாஇரண்டு திசையன்கள் மற்றும் திசையன் என்று அழைக்கப்படுகிறது , அவற்றின் பொதுவான தோற்றம் மற்றும் திசையன்கள் மீது கட்டப்பட்ட ஒரு இணையான வரைபடத்தின் மூலைவிட்டமாக இருந்து வருகிறது மற்றும் இரண்டு பக்கங்களிலும்.

    பலகோண விதி:

    எத்தனை திசையன்களின் கூட்டுத்தொகையை உருவாக்க, நீங்கள் 2 வது தொடக்கத்தை திசையனின் 1 வது காலத்தின் முடிவில் வைக்க வேண்டும், 2 வது இறுதியில் - 3 வது தொடக்கத்தில், முதலியன. விளைந்ததை மூடும் திசையன் உடைந்த கோடு, என்பது கூட்டுத்தொகை. அதன் ஆரம்பம் 1 இன் தொடக்கத்துடன் ஒத்துப்போகிறது, மற்றும் அதன் முடிவு கடைசியின் முடிவுடன் ஒத்துப்போகிறது.

    பண்புகள்:


    2.

    ஒரு திசையன் தயாரிப்பு ஒரு எண்ணுக்கு , நிபந்தனைகளை பூர்த்தி செய்யும் ஒரு திசையன்:
    .

    பண்புகள்:


    3.

    வித்தியாசத்தால்திசையன்கள் மற்றும் திசையன் என்று அழைக்கப்படுகிறது , வெக்டரின் கூட்டுத்தொகைக்கு சமம் மற்றும் திசையன் எதிர் திசையன் , அதாவது
    .

    - எதிர் உறுப்பு (திசையன்) விதி.

    ஒரு திசையன் ஒரு அடிப்படையாக சிதைவு

    திசையன்களின் கூட்டுத்தொகை தனிப்பட்ட முறையில் தீர்மானிக்கப்படுகிறது
    (மற்றும் மட்டும் ) தலைகீழ் செயல்பாடு, ஒரு திசையன் பல கூறுகளாக சிதைப்பது தெளிவற்றது: அதை தெளிவற்றதாக மாற்ற, கேள்விக்குரிய திசையன் சிதைந்த திசைகளைக் குறிப்பிடுவது அவசியம், அல்லது, அவர்கள் சொல்வது போல், குறிப்பிடுவது அவசியம். அடிப்படையில்.


    அடிப்படையை நிர்ணயிக்கும் போது, ​​திசையன்களின் கோப்லானாரிட்டி மற்றும் அல்லாத கூட்டுத்தன்மையின் தேவை அவசியம். இந்தத் தேவையின் பொருளைப் புரிந்து கொள்ள, திசையன்களின் நேரியல் சார்பு மற்றும் நேரியல் சுதந்திரம் ஆகியவற்றின் கருத்தை கருத்தில் கொள்வது அவசியம்.

    படிவத்தின் தன்னிச்சையான வெளிப்பாடு: , என்று அழைக்கப்படுகிறது நேரியல் கலவைதிசையன்கள்
    .

    பல திசையன்களின் நேரியல் கலவை அழைக்கப்படுகிறது அற்பமான, அதன் அனைத்து குணகங்களும் பூஜ்ஜியத்திற்கு சமமாக இருந்தால்.

    திசையன்கள்
    அழைக்கப்படுகின்றன நேரியல் சார்ந்தது, பூஜ்ஜியத்திற்கு சமமான இந்த வெக்டார்களின் அற்பமான நேரியல் சேர்க்கை இருந்தால்:
    (1), வழங்கப்பட்டது
    .
    சமத்துவம் என்றால் (1) அனைவருக்கும் மட்டுமே
    ஒரே நேரத்தில் பூஜ்ஜியத்திற்கு சமம், பின்னர் பூஜ்ஜியமற்ற திசையன்கள் சாப்பிடுவேன்.

    நேரியல் சார்பற்றது நிரூபிப்பது எளிது:.

    எந்த இரண்டு கோலினியர் திசையன்களும் நேரியல் சார்ந்து இருக்கும், மேலும் எந்த இரண்டு கோலினியர் அல்லாத திசையன்களும் நேரியல் சார்புடையவை

    முதல் அறிக்கையுடன் ஆதாரத்தைத் தொடங்குவோம். மற்றும் கோலினியர். அவை நேரியல் சார்ந்து இருப்பதைக் காட்டுவோம். உண்மையில், அவை கோலினியர் என்றால், அவை ஒரு எண் காரணியால் மட்டுமே ஒருவருக்கொருவர் வேறுபடுகின்றன, அதாவது.
    , எனவே
    . இதன் விளைவாக வரும் நேரியல் கலவையானது தெளிவாக அற்பமானதல்ல மற்றும் "0" க்கு சமமாக இருப்பதால், பின்னர் திசையன்கள் மற்றும் நேரியல் சார்ந்தது.

    இப்போது இரண்டு கோலினியர் அல்லாத திசையன்களைப் பார்ப்போம் மற்றும் . அவை நேரியல் சார்பற்றவை என்பதை நிரூபிப்போம். முரண்பாட்டின் மூலம் ஆதாரத்தை உருவாக்குவோம்.

    அவை நேரியல் சார்ந்தவை என்று வைத்துக் கொள்வோம். பின்னர் ஒரு அற்பமான நேரியல் கலவை இருக்க வேண்டும்
    . என்று வைத்துக் கொள்வோம்
    , பிறகு
    . இதன் விளைவாக சமத்துவம் என்பது திசையன்கள் என்று பொருள் மற்றும் கோலினியர், நமது ஆரம்ப அனுமானத்திற்கு முரணானது.

    இதேபோல் நாம் நிரூபிக்க முடியும்: எந்த மூன்று கோப்லனர் திசையன்களும் நேரியல் சார்ந்து இருக்கும், மேலும் எந்த இரண்டு கோப்லனர் அல்லாத திசையன்களும் நேரியல் சார்புடையவை.

    அடிப்படையின் கருத்து மற்றும் ஒரு குறிப்பிட்ட அடிப்படையில் ஒரு திசையன் சிதைவின் சிக்கலுக்குத் திரும்புகையில், நாம் அதைச் சொல்லலாம். விமானம் மற்றும் விண்வெளியில் உள்ள அடிப்படையானது நேரியல் சார்பற்ற திசையன்களின் தொகுப்பிலிருந்து உருவாகிறது.அடிப்படை இந்த கருத்து பொதுவானது, ஏனெனில் இது எத்தனை பரிமாணங்களின் இடத்திற்கும் பொருந்தும்.

    போன்ற வெளிப்பாடு:
    , திசையன் சிதைவு என்று அழைக்கப்படுகிறது திசையன்களால் ,…,.

    முப்பரிமாண இடத்தில் ஒரு அடிப்படையைக் கருத்தில் கொண்டால், திசையன் சிதைவு அடிப்படையில்
    சாப்பிடுவேன்
    , எங்கே
    -திசையன் ஒருங்கிணைப்புகள்.

    ஒரு குறிப்பிட்ட அடிப்படையில் தன்னிச்சையான திசையன் சிதைவதில் சிக்கலில், பின்வரும் அறிக்கை மிகவும் முக்கியமானது: எந்த திசையன்கொடுக்கப்பட்ட அடிப்படையில் தனித்துவமாக விரிவாக்க முடியும்
    .
    வேறு வார்த்தைகளில் கூறுவதானால், ஒருங்கிணைப்புகள்
    எந்த திசையன்களுக்கும் அடிப்படையுடன் தொடர்புடையது
    சந்தேகத்திற்கு இடமின்றி தீர்மானிக்கப்படுகிறது.

    விண்வெளியிலும் விமானத்திலும் ஒரு அடிப்படையை அறிமுகப்படுத்துவது ஒவ்வொரு திசையனையும் ஒதுக்க அனுமதிக்கிறது வரிசைப்படுத்தப்பட்ட மூன்று (ஜோடி) எண்கள் - அதன் ஆயத்தொலைவுகள். இந்த மிக முக்கியமான முடிவு, வடிவியல் பொருள்கள் மற்றும் எண்களுக்கு இடையே ஒரு தொடர்பை ஏற்படுத்த அனுமதிக்கிறது, இது பௌதிகப் பொருட்களின் நிலை மற்றும் இயக்கத்தை பகுப்பாய்வு ரீதியாக விவரிக்கவும் ஆய்வு செய்யவும் உதவுகிறது.

    ஒரு புள்ளி மற்றும் அடிப்படையின் தொகுப்பு அழைக்கப்படுகிறது ஒருங்கிணைப்பு அமைப்பு.

    அடிப்படையை உருவாக்கும் திசையன்கள் அலகு மற்றும் ஜோடி செங்குத்தாக இருந்தால், ஒருங்கிணைப்பு அமைப்பு அழைக்கப்படுகிறது செவ்வக,மற்றும் அடிப்படை ஆர்த்தோநார்மல்.

    எல். 2-2 திசையன்களின் தயாரிப்பு

    ஒரு திசையன் ஒரு அடிப்படையாக சிதைவு

    ஒரு திசையன் கருதுங்கள்
    , அதன் ஆயத்தொகுப்புகளால் வழங்கப்படுகிறது:
    .



    - திசையன் கூறுகள் அடிப்படை திசையன்களின் திசைகளில்
    .

    படிவத்தின் வெளிப்பாடு
    திசையன் சிதைவு என்று அழைக்கப்படுகிறது அடிப்படையில்
    .

    அதே வழியில் நாம் சிதைக்கலாம் அடிப்படையில்
    திசையன்
    :

    .

    கேள்விக்குரிய திசையன் மூலம் உருவாக்கப்பட்ட கோணங்களின் கோசைன்கள் அடிப்படை திசையன்களுடன்
    அழைக்கப்படுகின்றன திசை கொசைன்கள்

    ;
    ;
    .

    திசையன்களின் புள்ளி தயாரிப்பு.

    இரண்டு திசையன்களின் புள்ளி தயாரிப்பு மற்றும் இந்த வெக்டார்களின் மாடுலியின் பெருக்கத்திற்கும் அவற்றுக்கிடையே உள்ள கோணத்தின் கொசைனுக்கும் சமமான எண்ணாகும்

    இரண்டு வெக்டார்களின் ஸ்கேலர் தயாரிப்பு, இந்த திசையன்களில் ஒன்றின் மாடுலஸின் விளைபொருளாகவும், மற்ற திசையன்களின் ஆர்த்தோகனல் ப்ரொஜெக்ஷன் முதல் திசையில் இருக்கும்
    .

    பண்புகள்:


    திசையன்களின் ஆயத்தொலைவுகள் தெரிந்தால்
    மற்றும்
    , பின்னர், திசையன்களை அடிப்படையாக சிதைத்து
    :

    மற்றும்
    , கண்டுபிடிப்போம்

    , ஏனெனில்
    ,
    , அது

    .

    .

    திசையன்கள் செங்குத்தாக இருக்க வேண்டிய நிலை:
    .

    ரெக்டர்களின் கோலினரிட்டிக்கான நிபந்தனை:
    .

    திசையன்களின் திசையன் தயாரிப்பு

    அல்லது

    திசையன் மூலம் திசையன் தயாரிப்பு திசையன் அத்தகைய திசையன் அழைக்கப்படுகிறது
    , இது நிபந்தனைகளை பூர்த்தி செய்கிறது:


    பண்புகள்:


    கருதப்படும் இயற்கணித பண்புகள் ஒரு பகுப்பாய்வு வெளிப்பாட்டைக் கண்டறிய அனுமதிக்கிறது திசையன் தயாரிப்புஆர்த்தோநார்மல் அடிப்படையில் கூறு திசையன்களின் ஒருங்கிணைப்புகள் மூலம்.

    கொடுக்கப்பட்டது:
    மற்றும்
    .

    ஏனெனில் ,
    ,
    ,
    ,
    ,
    ,
    , அது


    . இந்த சூத்திரத்தை இன்னும் சுருக்கமாக, மூன்றாம் வரிசை தீர்மானிப்பான் வடிவத்தில் எழுதலாம்:

    .

    திசையன்களின் கலப்பு தயாரிப்பு

    மூன்று திசையன்களின் கலப்பு தயாரிப்பு ,மற்றும் திசையன் தயாரிப்புக்கு சமமான எண்
    , திசையன் மூலம் அளவிடல் பெருக்கப்படுகிறது .

    பின்வரும் சமத்துவம் உண்மை:
    , எனவே கலப்பு தயாரிப்பு எழுதப்பட்டது
    .

    வரையறையிலிருந்து பின்வருமாறு, மூன்று திசையன்களின் கலப்பு உற்பத்தியின் விளைவாக ஒரு எண் ஆகும். இந்த எண்ணுக்கு தெளிவான வடிவியல் பொருள் உள்ளது:

    கலப்பு தயாரிப்பு தொகுதி
    பொதுவான தோற்றத்திற்குக் குறைக்கப்பட்ட வெக்டார்களில் கட்டப்பட்ட ஒரு இணை குழாய்களின் தொகுதிக்கு சமம் ,மற்றும் .

    ஒரு கலப்பு பொருளின் பண்புகள்:

    திசையன்கள் என்றால் ,,ஆர்த்தோநார்மல் அடிப்படையில் குறிப்பிடப்பட்டுள்ளது
    அதன் ஒருங்கிணைப்புகளுடன், கலவையான தயாரிப்பு சூத்திரத்தைப் பயன்படுத்தி கணக்கிடப்படுகிறது

    .

    உண்மையில், என்றால்
    , அது

    ;
    ;
    , பிறகு
    .

    திசையன்கள் என்றால் ,,கோப்லனர், பின்னர் திசையன் தயாரிப்பு
    திசையன் செங்குத்தாக . மற்றும் நேர்மாறாக, என்றால்
    , பின்னர் parallelepiped தொகுதி பூஜ்ஜியம், மற்றும் இது திசையன்கள் coplanar (நேரியல் சார்ந்து) இருந்தால் மட்டுமே சாத்தியமாகும்.

    இவ்வாறு, மூன்று திசையன்கள் அவற்றின் கலப்பு தயாரிப்பு பூஜ்ஜியமாக இருந்தால் மட்டுமே கோப்லனர் ஆகும்.

    திசையன் கால்குலஸ் மற்றும் அதன் பயன்பாடுகளில் பெரிய மதிப்புகொடுக்கப்பட்ட வெக்டரின் கூறுகள் எனப்படும் பல திசையன்களின் கூட்டுத்தொகையாக கொடுக்கப்பட்ட வெக்டரை பிரதிநிதித்துவப்படுத்துவதில் ஒரு சிதைவு பணி உள்ளது.

    திசையன். பொதுவாக எண்ணற்ற தீர்வுகளைக் கொண்ட இந்தச் சிக்கல், கூறு திசையன்களின் சில கூறுகளைக் குறிப்பிட்டால் முழுமையாக வரையறுக்கப்படும்.

    2. சிதைவுக்கான எடுத்துக்காட்டுகள்.

    சிதைவின் பல பொதுவான நிகழ்வுகளைக் கருத்தில் கொள்வோம்.

    1. கொடுக்கப்பட்ட திசையன் c ஐ இரண்டு கூறு திசையன்களாக சிதைக்கவும், எடுத்துக்காட்டாக a, அளவு மற்றும் திசையில் கொடுக்கப்பட்டுள்ளது.

    இரண்டு திசையன்களுக்கு இடையிலான வேறுபாட்டை தீர்மானிப்பதில் சிக்கல் வருகிறது. உண்மையில், திசையன்கள் திசையன் c இன் கூறுகளாக இருந்தால், சமத்துவம் பூர்த்தி செய்யப்பட வேண்டும்.

    இங்கிருந்து இரண்டாவது கூறு திசையன் தீர்மானிக்கப்படுகிறது

    2. கொடுக்கப்பட்ட திசையன் c ஐ இரண்டு கூறுகளாக சிதைக்கவும், அதில் ஒன்று இருக்க வேண்டும் கொடுக்கப்பட்ட விமானம்மற்றும் இரண்டாவது கொடுக்கப்பட்ட நேர்கோட்டில் இருக்க வேண்டும் a.

    கூறு திசையன்களைத் தீர்மானிக்க, திசையன் c ஐ நகர்த்துகிறோம், இதனால் அதன் ஆரம்பம் விமானத்துடன் கொடுக்கப்பட்ட நேர்கோட்டின் குறுக்குவெட்டு புள்ளியுடன் ஒத்துப்போகிறது (புள்ளி O - படம் 18 ஐப் பார்க்கவும்). திசையன் c (புள்ளி C) முடிவில் இருந்து நாம் ஒரு நேர் கோட்டை வரைகிறோம்

    விமானத்துடன் குறுக்குவெட்டு (B என்பது வெட்டும் புள்ளி), பின்னர் C புள்ளியிலிருந்து இணையாக ஒரு நேர் கோட்டை வரைகிறோம்

    திசையன்கள் மற்றும் விரும்பியவையாக இருக்கும், அதாவது, நேர் கோடு a மற்றும் விமானம் இணையாக இல்லாவிட்டால், இயற்கையாகவே, சுட்டிக்காட்டப்பட்ட விரிவாக்கம் சாத்தியமாகும்.

    3. மூன்று கோப்லனர் திசையன்கள் a, b மற்றும் c கொடுக்கப்பட்டால், திசையன்கள் கோலினியர் அல்ல. திசையன் சியை திசையன்களாக சிதைப்பது அவசியம்

    மூன்றையும் பட்டியலிடுவோம் கொடுக்கப்பட்ட திசையன்கள்ஒரு புள்ளிக்கு O. பின்னர், அவர்களின் கோப்லானாரிட்டி காரணமாக, அவை ஒரே விமானத்தில் அமைந்திருக்கும். இந்த திசையன் c ஐ ஒரு மூலைவிட்டமாகப் பயன்படுத்தி, நாம் ஒரு இணையான வரைபடத்தை உருவாக்குவோம், அதன் பக்கங்களும் திசையன்களின் செயல்பாட்டுக் கோடுகளுக்கு இணையாக இருக்கும் (படம் 19). இந்த கட்டுமானம் எப்போதும் சாத்தியம் (திசையன்கள் கோலினியர் இல்லாவிட்டால்) மற்றும் தனித்துவமானது. படத்தில் இருந்து. 19 என்பது தெளிவாகிறது