Линейные уравнения. Решение, примеры. Более сложные примеры уравнений

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

ВВЕДЕНИЕ

«Уравнение - это золотой ключ, открывающий все математические сезамы»

С. Коваль

Математическое образование, получаемое в школе, очень важная часть жизни современного человека. Практически всё, что окружает нас так или иначе связано с математикой. Решение многих практических задач сводится к решению уравнений различных видов.

Уравнения - это наиболее объёмная тема всего курса алгебры. В прошлом учебном году на уроках алгебры мы познакомилась с квадратными уравнениями. Квадратные уравнения находят широкое применение при решении различных задач, как в области математики, так и в области физики и химии.

В школьном курсе математики изучается основные способы решения квадратных уравнений. Однако, имеются и другие приёмы решения квадратных уравнений, некоторые из которых позволяют быстро, рационально решать их.

Нами было проведено анкетирование среди 84 учащихся 8-9 классов по двум вопросам:

    Какие способы решения квадратных уравнений вы знаете?

    Какие вы используете чаще всего?

По результатам анкетирование были получены следующие результаты:

Проанализировав полученные результаты, мы пришли к выводу, что большинство учащихся используют при решении квадратных уравнений формулы корней с использование дискриминанта и недостаточно осведомлены о способах решения квадратных уравнений.

Таким образом, выбранная нами тема является актуальной.

Мы поставили перед собой цель : изучить нетрадиционные способы решения квадратных уравнений, познакомить учащихся 8 и 9 классов с различными способами решения, выработать умение выбирать рациональный способ решения квадратного уравнения.

Для достижения указанной цели нужно решить следующие задачи:

    собрать информацию о различных способах решения квадратных уравнений,

    освоить найденные способы решения,

    составить программу для решения квадратных уравнений по формулам корней квадратного уравнения в Excel,

    разработать дидактический материал для проведения урока или внеурочного мероприятия по нестандартным методам решения квадратных уравнений,

    провести занятие «Необычные способы решения квадратных уравнений» с учащимися 8 - 9 классов.

Объект исследования: квадратные уравнения.

Предмет исследования: различных способы решения квадратных уравнений.

Считаем, что практическая значимость работы состоит в возможности использования банка приёмов и способов решения квадратных уравнений на уроках математики и внеурочной деятельности, а также в ознакомлении учащихся 8 - 9 классов с данных материалом.

ГЛАВА 1. НЕОБЫЧНЫЕ МЕТОДЫ РЕШЕНИЯ КВАДРАТНЫХ УРАВНЕНИЙ

    1. СВОЙСТВА КОЭФФИЦИЕНТОВ (a,b,c)

Метод основан на свойствах коэффициентов a,b,c:

    Если a+b+c=0, то = 1, =

Пример:

-6х 2 + 2х +4=0, то = 1, = = .

    Если a - b+c=0, то = -1, = -

Пример:

2017х 2 + 2001х +16 =0, то = -1, -.

    1. ЗАВИСИМОСТИ КОЭФФИЦИЕНТОВ (a,b,c)

Справедливы следующие зависимости коэффициентов a,b,c:

Если b=a 2 +1, c=a, то х 1 =-а; x 2 = - .

Если b=-(a 2 +1), a=c, то x 1 =a; x 2 =.

Если b=a 2 -1, c=-a, то x 1 =-a; x 2 = .

Если b=-(a 2 -1), -a=c, то x 1 =a; x 2 = - .

Решим следующие уравнения:

    5x 2 + 26x + 5 = 0

x 1 = -5

x 2 = - 0,2.

    13x 2 - 167x + 13 = 0

x 1 =13 x 2 =

    14x 2 + 195x - 14 = 0

x 1 = - 14 x 2 =

    10x 2 - 99x - 10 = 0

x 1 =10 x 2 =-0,1.

    1. «ПЕРЕБРОС» ГЛАВНОГО КОЭФФИЦИЕНТА

Коэффициент а умножается на свободный член, как бы «перебрасывается» к нему, поэтому его называют способом «переброски». Далее корни находятся по теореме Виета. Найденные корни делятся на ранее переброшенный коэффициент, благодаря этому мы находим корни уравнения.

Пример:

2 - 3х + 1 = 0.

«Перебросим» коэффициент 2 к свободному члену, в результате получим уравнение

у 2 - 3у + 2 = 0.

Согласно теореме Виета

у 1 = 2 , х 1 = 2/2 , x 1 = 1,

у 2 = 1; x 2 = 1/2; x 2 = 0,5.

Ответ: 0,5; 1.

    1. ГРАФИЧЕСКИЙ СПОСОБ РЕШЕНИЯ

Если в уравнении аx 2 + bx + c = 0 перенести второй и третий члены в правую часть, то получим ax 2 = -bx -c .

Построим графики зависимостей у = aх 2 и у = -bx -c в одной системе координат.

График первой зависимости - парабола, проходящая через начало координат. График второй зависимости - прямая.

Возможны следующие случаи:

    прямая и парабола могут пересекаться в двух точках, абсциссы точек пересечения являются корнями квадратного уравнения;

    прямая и парабола могут касаться (только одна общая точка), т.е. уравнение имеет одно решение;

    прямая и парабола не имеют общих точек, т.е. квадратное уравнение не имеет корней.

Решим следующие уравнения:

1) х 2 + 2х - 3 = 0

х 2 = - 2х + 3

В одной системе координат построим график функции у =х 2 и график функции у = - 2х+3. Обозначив абсциссы точек пересечения, получим ответ.

Ответ: х 1 = - 3, х 2 =1.

2) х 2 + 6х +9 = 0

х 2 = - 6х - 9

В одной системе координат построим график функции у = х 2 и график функции у = -6х - 9. Обозначив абсциссу точки касания, получим ответ.

Ответ: х= - 3.

3) 2х 2 + 4х +7=0

2х 2 = - 4х - 7

В одной системе координат построим график функции у =2х 2 и график функции

Парабола у =2х 2 и прямая у = - 4х - 7 не имеют общих точек, следовательно уравнение не имеет корней.

Ответ: нет корней.

    1. РЕШЕНИЕ КВАДРАТНЫХ УРАВНЕНИЙ С ПОМОЩЬЮ ЦИРКУЛЯ И ЛИНЕЙКИ

Решим уравнение aх 2 +bх+c=0:

    Построим точки S(-b:2a,(a+c):2a)- центр окружности и точку А(0,1).

    Провести окружность радиуса SA.

    Абсциссы точек пересечения с осью Ох есть корни исходного уравнения.

При этом возможны три случая:

1) Радиус окружности больше ординаты центра (AS>SK , или R> ), окружность пересекает ось Ох в двух точках..B(х 1 ; 0) и D(х 2 ;0), где х 1 и х 2 - корни квадратного уравнения ах 2 + bх + с = 0.

2) Радиус окружности равен ординате центра (AS = SВ , или R = ), окружность касается оси Ох в точке B(х 1 ; 0), где х 1 - корень квадратного уравнения.

3) Радиус окружности меньше ординаты центра (AS < SВ , или R < ), окружность не имеет общих точек с осью абсцисс, в этом случае уравнение не имеет решения.

а) AS > SВ или R > , б) AS = SВ или R = в) AS < SВ, или R < .

Два решения х 1 и х 2 . Одно решение х 1.. Не имеет решения.

Пример 1: 2х 2 - 8х + 6 = 0.

Решение:

Проведём окружность радиуса SA, где А (0;1).

Ответ: х 1 = 1 , х 2 = 3.

Пример 2: х 2 - 6х + 9 = 0.

Решение : Найдём координаты S: x=3, y=5.

Ответ: x=3.

Пример 3: х 2 + 4 х + 5 = 0.

Решение: Координаты центра окружности: х= - 2 и y = 3.

Ответ: нет корней

    1. РЕШЕНИЕ С ПОМОЩЬЮ НОМОГРАММЫ

Номограмма (от греческого «nomos» - закон и грамма), графическое представление функции от нескольких переменных, позволяющее с помощью простых геометрических операций (например, прикладывание линейки) исследовать функциональные зависимости без вычислений. Например, решать квадратное уравнение без применения формул.

Это старый и в настоящее время забытый способ решения квадратных уравнений, помещённый на стр. 83 сборника: Брадис В.М. «Четырехзначные математические таблицы». - М., “ДРОФА”, 2000. Таблица XXII. Номограмма для решения уравнения z 2 + pz + q = 0 (см. Приложение 1).

Эта номограмма позволяет, не решая квадратного уравнения, по его коэффициентам определить корни уравнения.

Криволинейная шкала номограммы построена по формулам: ОВ = , АВ =

Полагая ОС = р, ЕD = q, ОЕ = а (все в см), из подобия треугольников САН и СDF получим пропорцию откуда после подстановок и упрощений вытекает уравнение z 2 + pz + q = 0, причем буква z означает метку любой точки криволинейной шкалы.

Пример 1 : z 2 - 9z + 8 = 0 .

На шкале p находим отметку -9, а на шкале q отметку 8. Проводим через эти метки прямую, которая пересекает кривую шкалу номограммы в отметках 1 и 8. Следовательно, корни уравнения 1 и 8.

Ответ: 1; 8.

Именно данное уравнение решено в таблице Брадиса стр. 83 (см. Приложение 1).

Пример 2: 2z 2 - 9z + 2 = 0.

Разделим коэффициенты этого уравнения на 2, получим уравнение:

z 2 - 4,5z + 1 = 0. Номограмма даёт корни z 1 = 4 иz 2 = 0,5.

Ответ: 4; 0,5.

Пример 3: x 2 - 25x + 66 = 0

Коэффициенты p и q выходят за пределы шкалы. Выполним подстановку x = 5z , получим уравнение:

z 2 - 5z + 2,64 = 0,

которое решаем посредством номограммы.

Получим z 1 = 0,6 и z 2 = 4,4,

откудаx 1 = 5 z 1 = 3,0 иx 2 = 5 z 2 = 22,0.

Ответ: 3; 22.

Пример 4: z 2 + 5z - 6 = 0, 1 =1 , а отрицательный корень находим, вычитая положительный корень из - p, т.е. z 2 = - p -1= - 5 - 1= -6.

Ответ: 1; -6.

Пример 5: z 2 - 2z - 8 = 0, номограмма даёт положительный корень z 1 =4, а отрицательный равен z 2 = - p -4 =

= 2 - 4= -2.

Ответ: 4; -2.

ГЛАВА 2. РЕШЕНИЕ КВАДРАТНОГО УРАВНЕНИЯ ПО ФОРМУЛАМ КОРНЕЙ С ПОМОЩЬЮ EXCEL

Мы решили составить программу для решения квадратного уравнения с помощью Excel - это широко распространенная компьютерная программа. Нужна она для проведения расчётов, составления таблиц и диаграмм, вычисления простых и сложных функций. Она входит в состав пакета Microsoft Office.

Лист программы Excel, где отображены формулы:

Лист программы Excel, где показан конкретный пример решения квадратного уравнения x 2 - 14x - 15 = 0 :

ГЛАВА 3. СРАВНЕНИЕ РАЗНЫХ СПОСОБОВ РЕШЕНИЯ КВАДРАТНЫХ УРАВНЕНИЙ

Формула корней квадратного уравнения с использованием дискриминанта D и D1

Универсальность, т.к. можно использовать для решения абсолютно всех квадратных уравнений

Громоздкий дискриминант, не входящий в таблицу квадратов

Теорема Виета

Быстрота решения в определённых случаях и экономия времени

Если дискриминант не является полным квадратом целого числа.

Не целые коэффициенты b и с.

Выделение полного квадрата

При правильном преобразовании в квадрат двучлена получаем квадратное уравнение неполного вида и следовательно быстрее находятся корни

Сложность выделения полного квадрата при дробных коэффициентах уравнения

Способ группировки

Можно решить, не зная формул

Не всегда среднее слагаемое удаётся разложить на подходящие слагаемые для группировки

Графический способ

Не требуется формул.

Можно быстро узнать количество корней уравнения

Приближённость решения

Свойства коэффициентов a,b,c

Быстрота решения.

Для уравнений с большими коэффициентами

Подходит только для некоторых уравнений

«Переброс» главного коэффициента

Быстрота решения, если корни целые

Такие же как с помощью теоремы Виета

Номограмма

Наглядность

Все, что требуется для решения-это номограмма

Не всегда имеется с собой номограмма.

Неточность решения

Нахождение корней с помощью циркуля и линейки

Наглядность

Если координаты центра нецелые числа.

Нахождении корней уравнений с большими коэффициентами

ЗАКЛЮЧЕНИЕ

«Человеку, изучающему алгебру, часто полезнее решить одну и ту же задачу тремя различными способами, чем решить три-четыре различные задачи. Решая одну задачу различными методами, можно путём сравнений выяснить, какой из них короче и эффективнее. Так вырабатывается опыт»

Уолтер Варвик Сойер

В ходе работы мы собрали материал и изучили способы решения (нахождения корней) квадратных уравнений. Решение уравнений разными способами представлено в Приложении 2.

Изучая разные способы решения квадратных уравнений, мы сделали вывод, что для каждого уравнения можно подобрать свой наиболее эффективный и рациональный вариант нахождения корней. Каждый из способов решения уникален и удобен в определённых случаях. Некоторые способы решения позволяют сэкономить время, что немаловажно при решении заданий на ОГЭ, другие - помогают решить уравнение с очень большими коэффициентами. Мы постарались сравнить разные способы решения, составив таблицу, в которой отразили плюсы и минусы каждого из способов.

Нами разработан раздаточный материал. Познакомиться с банком заданий по теме можно в Приложении 3.

Используя Microsoft Excel, мы составили электронную таблицу, которая позволяет автоматически рассчитывать корни квадратного уравнения по формулам корней.

Мы провели урок, посвященный необычным способам решения квадратных уравнений, для учащихся 9 классов. Ученикам очень понравились способы, они отметили, что полученные знания пригодятся им в дальнейшем обучении. Результатом проведённого урока стали работы учащихся, в которых они представили различные варианты решения квадратных уравнений (см. Приложение 4).

Материалом работы могут воспользоваться и те, кто любит математику и те, кто хочет знать о математике больше.

ЛИТЕРАТУРА

    Брадис В. М. «Четырехзначные математические таблицы для средней школы», М.: Дрофа, 2000.

    Виленкин Н.Я. «Алгебра для 8 класса», М.: Просвещение, 2000.

    Галицкий М.Л. «Сборник задач по алгебре», М.: Просвещение 2002.

    Глейзер Г. И. «История математики в школе», М.: Просвещение, 1982.

    Звавич Л.И. «Алгебра 8 класс», М.: Мнемозина, 2002.

    Макарычев Ю.Н. “Алгебра 8 класс”, М.: Просвещение, 2015.

    Плужников И. «10 способов решения квадратных уравнений» // Математика в школе. - 2000.- № 40.

    Пресман А.А. «Решение квадратного уравнения с помощью циркуля и линейки»//М., Квант, №4/72, c.34.

    Савин А.П. «Энциклопедический словарь юного математика»,

М.: Педагогика, 1989.

Интернет ресурсы:

http://revolution.allbest.ru/

ПРИЛОЖЕНИЕ 1

«СБОРНИК БРАДИСА В.М.»

ПРИЛОЖЕНИЕ 2

«РЕШЕНИЕ УРАВНЕНИЯ ВСЕМИ СПОСОБАМИ»

Исходноеуравнение: 2 +3х -1 = 0.

1.Формула корней квадратного уравнения с использованием дискриминанта D

2 +3х -1 = 0

D = b 2 - 4ac = 9+16 = 25 > 0, => уравнение имеет два корня

x 1,2 =

x 1 ==

x 2 ==-1

2.Теорема Виета

2 +3х -1 = 0, поделим уравнение на 4, чтобы оно стало приведённым

х 2 +х -=0

х 1 = -1

х 2 =

3. Метод выделения полного квадрата

2 +3х -1 = 0

(4х 2 +2*2х *+)-1=0

(2х +) 2 -=0

(2х + -)(2х + +)=0,

(2х -)=0 (2х +2)=0

х 1 = х 2 = -1

4. Способ группировки

2 +3х -1 = 0

2 +4х-1х-1=0

4х(х+1)-1(х+1)=0

(4х-1)(х+1)=0, произведение =0, когда один из множителей=0

(4х-1)=0 (х+1)=0

х 1 = х 2 = -1

5. Свойства коэффициентов

2 +3х -1 = 0

Если a - b+c=0, то = -1, = -

4-3-1=0, => = -1, =

6. Метод «переброски» главного коэффициента

2 +3х -1 = 0

y 2 +3y - 4 = 0

Теорема Виета:

y 1 = -4

y 2 = 1

Разделим найденные корни на главный коэффициент и получим корни нашего уравнения:

х 1 = -1

х 2 =

7. Способ решения квадратных уравнений с помощью циркуля и линейки

2 +3х -1 = 0

Определим координаты точки центра окружности по формулам:

х 1 = -1

х 2 =

8. Графический способ решения

2 +3х -1 = 0

2 = - 3x + 1

В одной системе координат построим график функции у = 4х 2 и график функции

у = - 3х+1. Обозначив абсциссы точек пересечения, получим ответ:

х 1 = -1

9. С помощью номограммы

2 +3х -1 = 0, разделим коэффициенты уравнения 1/на 4, получим уравнение

х 2 +х -= 0.

Номограмма даёт положительный корень = ,

а отрицательный корень находим, вычитая положительный корень из - p, т.е.

x 2 = - p -=- -= -1.

10. Решение данного уравнения в EXCEL

ПРИЛОЖЕНИЕ 3

«ДИДАКТИЧЕСКИЙ МАТЕРИАЛ ДЛЯ ТЕМЫ

РЕШЕНИЕ КВАДРАТНЫХ УРАВНЕНИЙ” »

10х 2 + 2017х + 2007 = 0 -1 -200,7

-10х 2 + 7х + 3 = 0 -1 0,3

354х 2 -52х -302 = 0 1 -

100х 2 -99х-1 = 0 1 -0,01

2 + 9х + 4 = 0 -1 -0,8

2017х 2 + х -2016 = 0 -1

22х 2 +10х-12 = 0 -1

5432х 2 -3087х-2345 = 0 1 -

2 + 2х -6с = 0 1 -1,5

55х 2 -44х -11= 0 1 -0,2

2 - 7х - 3 = 0 - , 1,5

2 -17х-15 = 0 -0,75, 5

4271х 2 -4272х + 1 = 0 1,

2 +10х + 7 = 0 -1, - 2

2 - 11х + 2 = 0 2, 0,2

2 - 11х + 15 = 0 2,5, 3

2 + 4х -3= 0 -1,5, 0,5

2 -12х + 7 = 0 1,4, 1

2 + 13х + 15 = 0 -1,5 -5

2 -7х + 2 = 0 1/3 2

ПРИЛОЖЕНИЕ 4

«РАБОТЫ УЧАЩИХСЯ»

Как правило, уравнения появляются в задачах, в которых требуется найти некую величину. Уравнение позволяет сформулировать задачу на языке алгебры. Решив уравнение, мы получим значение нужной величины, которая называется неизвестной. «У Андрея в кошельке несколько рублей. Если умножить это число на 2, а затем вычесть 5, получится 10. Сколько денег у Андрея?» Обозначим неизвестную сумму денег за х и запишем уравнение: 2х-5=10.

Чтобы говорить о способах решения уравнений , сначала нужно определить основные понятия и познакомиться с общепринятыми обозначениями. Для разных типов уравнений существуют различные алгоритмы их решения. Проще всего решаются уравнения первой степени с одной неизвестной. Многим со школы знакома формула для решения квадратных уравнений. Приемы высшей математики помогут решить уравнения более высокого порядка. Множество чисел, на которых определено уравнение, тесно связано с его решениями. Также интересна взаимосвязь между уравнениями и графиками функций, так как представление уравнений в графическом виде великолепно помогает в их .

Описание . Уравнение - это математическое равенство с одной или несколькими неизвестными величинами, например 2х+3у=0.

Выражения по обе стороны знака равенства называются левой и правой частями уравнения . Буквами латинского алфавита обозначаются неизвестные. Хотя число неизвестных может быть любым, далее мы расскажем только об уравнениях с одной неизвестной, которую будем обозначать за х.

Степень уравнения - это максимальная степень, в которую возводится неизвестная. Например,
$3x^4+6x-1=0$ - уравнение четвертой степени, $x-4x^2+6x=8$ - уравнение второй степени.

Числа, на которые умножается неизвестная, называются коэффициентами . В предыдущем примере неизвестная в четвертой степени имеет коэффициент 3. Если при замене х на это число выполняется заданное равенство, то говорят, что это число удовлетворяет уравнению. Оно называется решением уравнения , или его корнем. Например, 3 является корнем, или решением, уравнения 2х+8=14, так как 2*3+8=6+8=14.

Решение уравнений . Допустим, что мы хотим решить уравнение 2х+5=11.

Можно подставить в него какое-нибудь значение х, например х=2. Заменим х на 2 и получим: 2*2+5=4+5=9.

Здесь что-то не так, потому что в правой части уравнения мы должны были получить 11. Попробуем х=3: 2*3+5=6+5=11.

Ответ верный. Получается, что если неизвестная принимает значение 3, то равенство выполняется . Следовательно, мы показали, что число 3 является решением уравнения.

Способ, который мы использовали для решения этого уравнения, называется методом подбора . Очевидно, что он неудобен в использовании. Более того, его даже нельзя назвать методом. Чтобы убедиться в этом, достаточно попробовать применить его к уравнению вида $x^4-5x^2+16=2365$.

Методы решения . При существуют так называемые «правила игры», с которыми будет полезно ознакомиться. Наша цель - определить значение неизвестной, которое удовлетворяет уравнению. Поэтому нужно каким-либо способом выделить неизвестную. Для этого необходимо перенести члены уравнения из одной его части в другую. Первое правило решения уравнений таково…

1. При переносе члена уравнения из одной части в другую его знак меняется на противоположный: плюс меняется на минус и наоборот. Рассмотрим в качестве примера уравнение 2х+5=11. Перенесем 5 из левой части в правую: 2х=11-5. Уравнение примет вид 2х=6.

Перейдем ко второму правилу.
2. Обе части уравнения можно умножать и делить на число, не равное нулю. Применим это правило к нашему уравнению: $x=\frac62=3$. В левой части равенства осталась только неизвестная х, следовательно, мы нашли ее значение и решили уравнение.

Мы только что рассмотрели простейшую задачку - линейное уравнение с одной неизвестной . Уравнения этого типа всегда имеют решение, более того, их всегда можно решить с помощью простейших операций: сложения, вычитания, умножения и деления. Увы, не все уравнения столь же просты. Более того, степень их сложности возрастает очень быстро. Например, уравнения второй степени легко решит любой ученик средней школы, но способы решения систем линейных уравнений или уравнений высших степеней изучаются только в старших классах.

52. Более сложные примеры уравнений .
Пример 1 .

5/(x – 1) – 3/(x + 1) = 15/(x 2 – 1)

Общий знаменатель есть x 2 – 1, так как x 2 – 1 = (x + 1)(x – 1). Умножим обе части этого уравнения на x 2 – 1. Получим:

или, после сокращения,

5(x + 1) – 3(x – 1) = 15

5x + 5 – 3x + 3 = 15

2x = 7 и x = 3½

Рассмотрим еще уравнение:

5/(x-1) – 3/(x+1) = 4(x 2 – 1)

Решая, как выше, получим:

5(x + 1) – 3(x – 1) = 4
5x + 5 – 3x – 3 = 4 или 2x = 2 и x = 1.

Посмотрим, оправдываются ли наши равенства, если заменить в каждом из рассмотренных уравнений x найденным числом.

Для первого примера получим:

Видим, что здесь нет места никаким сомнениям: мы нашли такое число для x, что требуемое равенство оправдалось.

Для второго примера получим:

5/(1-1) – 3/2 = 15/(1-1) или 5/0 – 3/2 = 15/0

Здесь возникают сомнения: мы встречаемся здесь с делением на нуль, которое невозможно. Если в будущем нам удастся придать определенный, хотя бы и косвенный, смысл этому делению, то тогда мы можем согласиться с тем, что найденное решение x – 1 удовлетворяет нашему уравнению. До этой же поры мы должны признать, что наше уравнение вовсе не имеет решения, имеющего прямой смысл.

Подобные случаи могут иметь место тогда, когда неизвестное входит как-либо в знаменатели дробей, имеющихся в уравнении, причем некоторые из этих знаменателей, при найденном решении, обращаются в нуль.

Пример 2 .

Можно сразу видеть, что данное уравнение имеет форму пропорции: отношение числа x + 3 к числу x – 1 равно отношению числа 2x + 3 к числу 2x – 2. Пусть кто-либо, в виду такого обстоятельства, решит применить сюда для освобождения уравнения от дробей основное свойство пропорции (произведение крайних членов равно произведению средних). Тогда он получит:

(x + 3) (2x – 2) = (2x + 3) (x – 1)

2x 2 + 6x – 2x – 6 = 2x 2 + 3x – 2x – 3.

Здесь может возбудить опасения, что мы не справимся с этим уравнением, то обстоятельство, что в уравнение входят члены с x 2 . Однако, мы можем от обеих частей уравнения вычесть по 2x 2 - от этого уравнение не нарушится; тогда члены с x 2 уничтожатся, и мы получим:

6x – 2x – 6 = 3x – 2x – 3

Перенесем неизвестные члены влево, известные вправо - получим:

3x = 3 или x = 1

Вспоминая данное уравнение

(x + 3)/(x – 1) = (2x + 3)/(2x – 2)

мы сейчас же подметим, что найденное значение для x (x = 1) обращает в нуль знаменателей каждой дроби; от такого решения мы, пока не рассмотрели вопроса о делении на нуль, должны отказаться.

Если мы подметим еще, что применение свойства пропорции усложнило дело и что можно было бы получить более простое уравнение, умножая обе части данного на общий знаменатель, а именно на 2(x – 1) - ведь 2x – 2 = 2 (x – 1), то получим:

2(x + 3) = 2x – 3 или 2x + 6 = 2x – 3 или 6 = –3,

что невозможно.

Это обстоятельство указывает, что данное уравнение не имеет таких, имеющих прямой смысл решений, которые не обращали бы знаменателей данного уравнения в нуль.
Решим теперь уравнение:

(3x + 5)/(x – 1) = (2x + 18)/(2x – 2)

Умножим обе части уравнения 2(x – 1), т. е. на общий знаменатель, получим:

6x + 10 = 2x + 18

Найденное решение не обращает в нуль знаменатель и имеет прямой смысл:

или 11 = 11

Если бы кто-либо, вместо умножения обеих частей на 2(x – 1), воспользовался бы свойством пропорции, то получил бы:

(3x + 5)(2x – 2) = (2x + 18)(x – 1) или
6x 2 + 4x – 10 = 2x 2 + 16x – 18.

Здесь уже члены с x 2 не уничтожались бы. Перенеся все неизвестные члены в левую часть, а известные в правую, получили бы

4x 2 – 12x = –8

x 2 – 3x = –2

Это уравнение мы теперь решить не сумеем. В дальнейшем мы научимся решать такие уравнения и найдем для него два решения: 1) можно взять x = 2 и 2) можно взять x = 1. Легко проверить оба решения:

1) 2 2 – 3 · 2 = –2 и 2) 1 2 – 3 · 1 = –2

Если мы вспомним начальное уравнение

(3x + 5) / (x – 1) = (2x + 18) / (2x – 2),

то увидим, что теперь мы получим оба его решения: 1) x = 2 есть то решение, которое имеет прямой смысл и не обращает знаменателя в нуль, 2) x = 1 есть то решение, которое обращает знаменателя в нуль и не имеет прямого смысла.

Пример 3 .

Найдем общего знаменателя дробей, входящих в это уравнение, для чего разложим на множители каждого из знаменателей:

1) x 2 – 5x + 6 = x 2 – 3x – 2x + 6 = x(x – 3) – 2(x – 3) = (x – 3)(x – 2),

2) x 2 – x – 2 = x 2 – 2x + x – 2 = x (x – 2) + (x – 2) = (x – 2)(x + 1),

3) x 2 – 2x – 3 = x 2 – 3x + x – 3 = x (x – 3) + (x – 3) = (x – 3) (x + 1).

Общий знаменатель равен (x – 3)(x – 2)(x + 1).

Умножим обе части данного уравнения (а его мы теперь можем переписать в виде:

на общего знаменателя (x – 3) (x – 2) (x + 1). Тогда, после сокращения каждой дроби получим:

3(x + 1) – 2(x – 3) = 2(x – 2) или
3x + 3 – 2x + 6 = 2x – 4.

Отсюда получим:

–x = –13 и x = 13.

Это решение имеет прямой смысл: оно не обращает в нуль ни одного из знаменателей.

Если бы мы взяли уравнение:

то, поступая совершенно так же, как выше, получили бы

3(x + 1) – 2(x – 3) = x – 2

3x + 3 – 2x + 6 = x – 2

3x – 2x – x = –3 – 6 – 2,

откуда получили бы

что невозможно. Это обстоятельство показывает, что нельзя найти для последнего уравнения решения, имеющего прямой смысл.

В курсе школьной математики, ребенок впервые слышит термин "уравнение". Что такое это, попробуем разобраться вместе. В данной статье рассмотрим виды и способы решения.

Математика. Уравнения

Для начала предлагаем разобраться с самим понятием, что это такое? Как гласят многие учебники математики, уравнение - это некоторые выражения, между которыми стоит обязательно знак равенства. В этих выражениях присутствуют буквы, так называемые переменные, значение которых и необходимо найти.

Это атрибут системы, который меняет свое значение. Наглядным примером переменных являются:

  • температура воздуха;
  • рост ребенка;
  • вес и так далее.

В математике они обозначаются буквами, например, х, а, b, с... Обычно задание по математике звучит следующим образом: найдите значение уравнения. Это значит, что необходимо найти значение данных переменных.

Разновидности

Уравнение (что такое, мы разобрали в предыдущем пункте) может быть следующего вида:

  • линейные;
  • квадратные;
  • кубические;
  • алгебраические;
  • трансцендентные.

Для более подробного знакомства со всеми видами, рассмотрим каждый в отдельности.

Линейное уравнение

Это первый вид, с которым знакомятся школьники. Они решаются довольно-таки быстро и просто. Итак, линейное уравнение, что такое? Это выражение вида: ах=с. Так не особо понятно, поэтому приведем несколько примеров: 2х=26; 5х=40; 1,2х=6.

Разберем примеры уравнений. Для этого нам необходимо все известные данные собрать с одной стороны, а неизвестные в другой: х=26/2; х=40/5; х=6/1,2. Здесь использовались элементарные правила математики: а*с=е, из этого с=е/а; а=е/с. Для того чтобы завершить решение уравнения, выполним одно действие (в нашем случае деление) х=13; х=8; х=5. Это были примеры на умножение, теперь просмотрим на вычитание и сложение: х+3=9; 10х-5=15. Известные данные переносим в одну сторону: х=9-3; х=20/10. Выполняем последнее действие: х=6; х=2.

Также возможны варианты линейных уравнений, где используется более одной переменной: 2х-2у=4. Для того чтобы решить, необходимо к каждой части прибавить 2у, у нас получается 2х-2у+2у=4-2у, как мы заметили, по левую часть знака равенства -2у и +2у сокращаются, при этом у нас остается: 2х=4-2у. Последним шагом делим каждую часть на два, получаем ответ: икс равен два минус игрек.

Задачи с уравнениями встречаются даже на папирусах Ахмеса. Вот одна из задач: число и четвертая его часть дают в сумме 15. Для ее решения мы записываем следующее уравнение: икс плюс одна четвертая икс равняется пятнадцати. Мы видим еще один пример по итогу решения, получаем ответ: х=12. Но эту задачу можно решить и другим способом, а именно египетским или, как его называют по-другому, способом предположения. В папирусе используется следующее решение: возьмите четыре и четвертую ее часть, то есть единицу. В сумме они дают пять, теперь пятнадцать необходимо разделить на сумму, мы получаем три, последним действием три умножаем на четыре. Мы получаем ответ: 12. Почему мы в решении пятнадцать делим на пять? Так узнаем, во сколько раз пятнадцать, то есть результат, который нам необходимо получить, меньше пяти. Таким способом решали задачи в средние века, он стал зваться методом ложного положения.

Квадратные уравнения

Кроме рассмотренных ранее примеров, существуют и другие. Какие именно? Квадратное уравнение, что такое? Они имеют вид ax 2 +bx+c=0. Для их решения необходимо ознакомиться с некоторыми понятиями и правилами.

Во-первых, нужно найти дискриминант по формуле: b 2 -4ac. Есть три варианта исхода решения:

В первом варианте мы можем получить ответ из двух корней, которые находятся по формуле: -b+-корень из дискриминанта разделенные на удвоенный первый коэфициент, то есть 2а.

Во втором случае корней у уравнения нет. В третьем случае корень находится по формуле: -b/2а.

Рассмотрим пример квадратного уравнения для более подробного знакомства: три икс в квадрате минус четырнадцать икс минус пять равняется нулю. Для начала, как и писалось ранее, ищем дискриминант, в нашем случае он равен 256. Отметим, что полученное число больше нуля, следовательно, мы должны получить ответ состоящих из двух корней. Подставляем полученный дискриминант в формулу нахождения корней. В результате мы имеем: икс равняется пяти и минус одной третьей.

Особые случаи в квадратных уравнениях

Это примеры, в которых некоторые значения равны нулю (а, b или с), а возможно и несколько.

Для примера возьмем следующее уравнение, которое является квадратным: два икс в квадрате равняется нулю, здесь мы видим, что b и с равны нулю. Попробуем его решить, для этого обе части уравнения делим на два, мы имеем: х 2 =0. В итоге получаем х=0.

Другой случай 16х 2 -9=0. Здесь только b=0. Решим уравнение, свободный коэфициент переносим в правую часть: 16х 2 =9, теперь каждую часть делим на шестнадцать: х 2 = девять шестнадцатых. Так как у нас х в квадрате, то корень из 9/16 может быть как отрицательным, так и положительным. Ответ записываем следующим образом: икс равняется плюс/минус три четвертых.

Возможен и такой вариант ответа, как у уравнения корней вовсе нет. Посмотрим на такой пример: 5х 2 +80=0, здесь b=0. Для решения свободный член перекидываете в правую сторону, после этих действий получаем: 5х 2 =-80, теперь каждую часть делим на пять: х 2 = минус шестнадцать. Если любое число возвести в квадрат, то отрицательное значение мы не получим. По этому наш ответ звучит так: у уравнения корней нет.

Разложение трехчлена

Задание по квадратным уравнениям может звучать и другим образом: разложить квадратный трехчлен на множители. Это возможно осуществить, воспользовавшись следующей формулой: а(х-х 1)(х-х 2). Для этого, как и в другом варианте задания, необходимо найти дискриминант.

Рассмотрим следующий пример: 3х 2 -14х-5, разложите трехчлен на множетели. Находим дискриминант, пользуясь уже известной нам формулой, он получается равным 256. Сразу отмечаем, что 256 больше нуля, следовательно, уравнение будет иметь два корня. Находим их, как в предыдущем пункте, мы имеем: х= пять и минус одна третья. Воспользуемся формулой для разложения трехчлена на множетели: 3(х-5)(х+1/3). Во второй скобке мы получили знак равно, потому что в формуле стоит знак минуса, а корень тоже отрицательный, пользуясь элементарными знаниями математики, в сумме мы имеем знак плюса. Для упрощения, перемножим первый и третий член уравнения, чтобы избавиться от дроби: (х-5)(х+1).

Уравнения сводящиеся к квадратному

В данном пункте научимся решать более сложные уравнения. Начнем сразу с примера:

(x 2 - 2x) 2 - 2(x 2 - 2x) - 3 = 0. Можем заметить повторяющиеся элементы: (x 2 - 2x), нам для решения удобно заменить его на другую переменную, а далее решать обычное квадратное уравнение, сразу отмечаем, что в таком задании мы получим четыре корня, это не должно вас пугать. Обозначаем повторение переменной а. Мы получаем: а 2 -2а-3=0. Наш следующий шаг - это нахождение дискриминанта нового уравнения. Мы получаем 16, находим два корня: минус один и три. Вспоминаем, что мы делали замену, подставляем эти значения, в итоге мы имеем уравнения: x 2 - 2x=-1; x 2 - 2x=3. Решаем их в первом ответ: х равен единице, во втором: х равен минусу одному и трем. Записываем ответ следующим образом: плюс/минус один и три. Как правило, ответ записывают в порядке возрастания.

Кубические уравнения

Рассмотрим еще один возможный вариант. Речь пойдет о кубических уравнениях. Они имеют вид: ax 3 + b x 2 + cx + d =0. Примеры уравнений мы рассмотрим далее, а для начала немного теории. Они могут иметь три корня, так же существует формула для нахождения дискриминанта для кубического уравнения.

Рассмотрим пример: 3х 3 +4х 2 +2х=0. Как его решить? Для этого мы просто выносим х за скобки: х(3х 2 +4х+2)=0. Все что нам остается сделать - это вычислить корни уравнения в скобках. Дискриминант квадратного уравнения в скобках меньше нуля, исходя из этого, выражение имеет корень: х=0.

Алгебра. Уравнения

Переходим к следующему виду. Сейчас мы кратко рассмотрим алгебраические уравнения. Одно из заданий звучит следующим образом: разложить на множетели 3х 4 +2х 3 +8х 2 +2х+5. Самым удобным способом будет следующая группировка: (3х 4 +3х 2)+(2х 3 +2х)+(5х 2 +5). Заметим, что 8х 2 из первого выражения мы представили в виде суммы 3х 2 и 5х 2 . Теперь выносим из каждой скобки общий множитель 3х 2 (х2+1)+2х(х 2 +1)+5(х 2 +1). Мы видим, что у нас есть общий множитель: икс в квадрате плюс один, выносим его за скобки: (х 2 +1)(3х 2 +2х+5). Дальнейшее разложение невозможно, так как оба уравнения имеют отрицательный дискриминант.

Трансцендентные уравнения

Предлагаем разобраться со следующим типом. Это уравнения, которые содержат трансцендентные функции, а именно логарифмические, тригонометрические или показательные. Примеры: 6sin 2 x+tgx-1=0, х+5lgx=3 и так далее. Как они решаются вы узнаете из курса тригонометрии.

Функция

Завершающим этапом рассмотрим понятие уравнение функции. В отличии от предыдущих вариантов, данный тип не решается, а по нему строится график. Для этого уравнение стоит хорошо проанализировать, найти все необходимые точки для построения, вычислить точку минимума и максимума.