Индукционная передача энергии своими руками. Передача электроэнергии без проводов - от начала до наших дней. Современные разработки передачи энергии

Беспроводная передача для доставки электричества имеет возможность поставлять основные достижения в области промышленности и приложениях, зависящих от физического контакта разъема. Оно, в свою очередь, может быть ненадежным и привести к неудачам. Передача беспроводной электроэнергии была впервые продемонстрирована Никола Тесла в 1890-х годах. Однако только в последнее десятилетие технология была использована до такой степени, что она предлагает реальные, ощутимые преимущества для приложений реального мира. В частности, развитие резонансной беспроводной системы питания для рынка бытовой электроники показало, что зарядка по индукции обеспечивает новые уровни удобства для миллионов повседневных устройств.

Рассматриваемая мощность широко известна многими терминами. Включая индуктивную передачу, связь, резонансную беспроводную сеть и такую же отдачу напряжения. Каждое из этих условий, по существу, описывает один и тот же фундаментальный процесс. Беспроводную передачу электроэнергии или мощности от источника питания до напряжения нагрузки без разъемов через воздушный зазор. Основой являются две катушки - передатчика и приемника. Первая возбуждается переменным током для генерации магнитного поля, которое, в свою очередь, индуцирует напряжение во второй.

Как работает рассматриваемая система

Основы беспроводной мощности включают раздачу энергии от передатчика к приемнику через колебательное магнитное поле. Для достижения этого постоянный ток, подаваемый источником питания, преобразуется в высокочастотный переменный. С помощью специально разработанной электроники, встроенной в передатчик. Переменный ток активирует катушку медного провода в раздатчике, которая генерирует магнитное поле. Когда вторая (приемная) обмотка размещается в непосредственной близости. Магнитное поле может вызывать переменный ток в принимающей катушке. Электроника в первом устройстве затем преобразует переменный обратно в постоянный, который становится потребляемой мощностью.

Схема беспроводной передачи электроэнергии

Напряжение «сети» преобразуется в сигнал переменного тока, который затем посылается на катушку передатчика через электронную цепь. Протекающий через обмотку раздатчика, индуцирует магнитное поле. Оно, в свою очередь, может распространяться на катушку приемника, которая находится в относительной близости. Затем магнитное поле генерирует ток, протекающий через обмотку приемного устройства. Процесс, посредством которого энергия распространяется между передающей и приемной катушками, также упоминается как магнитная или резонансная связь. И достигается с помощью обеих обмоток, функционирующих на той же частоте. Ток, текущий в катушке приемника, преобразуется в постоянный с помощью схемы приемника. Затем может использоваться для питания устройства.

Что значит резонанс

Расстояние, на которое может передаваться энергия (или мощность), увеличивается, если катушки передатчика и приемника резонируют на одной и той же частоте. Подобно тому, как настраиваемая вилка колеблется на определенной высоте и может достигать максимальной амплитуды. Это относится к частоте, с которой объект естественным образом вибрирует.

Преимущества беспроводной передачи

В чем заключаются преимущества? Плюсы:

  • сокращаются расходы, связанные с поддержанием прямых соединителей (например, в традиционном промышленном скользком кольце);
  • большее удобство для зарядки обычных электронных устройств;
  • безопасная передача в приложения, которые должны оставаться герметически закрытыми;
  • электроника может быть полностью скрыта, что снижает риск коррозии из-за таких элементов как кислород и вода;
  • надежная и последовательная подача питания на вращающееся, высокомобильное промышленное оборудование;
  • обеспечивает надежную передачу мощности в критически важные системы во влажной, грязной и движущейся среде.

Независимо от приложения, ликвидация физического соединения обеспечивает ряд преимуществ по сравнению с традиционными разъемами питания кабеля.

Эффективность рассматриваемой передачи энергии

Общая эффективность беспроводной системы питания является самым важным фактором в определении ее производительности. Результативность системы измеряет количество мощности, передаваемой между источником питания (то есть, настенной розеткой) и принимающим устройством. Это, в свою очередь, определяет такие аспекты как скорость зарядки и дальность распространения.

Системы беспроводной связи различаются в зависимости от их уровня эффективности, основанного на таких факторах, как конфигурация и дизайн катушки, расстояние передачи. Менее результативное устройство будет генерировать больше выбросов и приведет к меньшей мощности, проходящей через приемное устройство. Как правило, беспроводные технологии передачи электроэнергии для таких устройств как смартфоны, могут достигать 70% производительности.

Как измеряется эффективность

В смысле, как количество мощности (в процентах), которое передается от источника питания к приемному устройству. То есть, беспроводная передача электроэнергии для смартфона с КПД 80% означает, что 20% входной мощности потеряно между настенной розеткой и батареей для заряжаемого гаджета. Формула для измерения эффективности работы: производительность = постоянный ток исходящий, деленный на входящий, полученный результат умножить на 100%.

Беспроводные способы передачи электроэнергии

Мощность может распространяться по рассматриваемой сети почти по всем неметаллическим материалам, включая, но не ограничиваясь ими. Это такие твердые вещества, как древесина, пластмасса, текстиль, стекло и кирпич, а также газы и жидкости. Когда металлический или электропроводящий материал (то есть, помещается в непосредственной близости от электромагнитного поля, объект поглощает мощность из него и в результате нагревается. Это, в свою очередь, влияет на эффективность системы. Вот как работают индукционные приготовления, к примеру, неэффективная передача мощности из варочной панели создает тепло для приготовления пищи.

Чтобы создать систему беспроводной передачи электроэнергии, необходимо вернуться к истокам рассматриваемой темы. А,точнее, к успешному ученому и изобретателю Никола Тесла, который создал и запатентовал генератор, способный брать питание без различных материалистических проводников. Итак, для реализации беспроводной системы необходимо собрать все важные элементы и части, в результате будет реализована небольшая Это устройство, которое создает электрическое поле высокого напряжения в воздухе, вокруг него. При этом имеется небольшая входная мощность, она обеспечивает беспроводную передачу энергии на расстоянии.

Одним из наиболее важных способов передачи энергии является индуктивная связь. Он в основном используется для ближнего поля. Охарактеризован на том факте, что при прохождении тока по одному проводу на концах другого индуцируется напряжение. Передача мощности осуществляется путем взаимности между двумя материалами. Общий пример - это трансформатор. Микроволновая передача энергии, как идея, была разработана Уильямом Брауном. Вся концепция включает в себя преобразование питания переменного тока в радиочастотное и передачу его в пространстве и повторное в переменную мощность на приемнике. В этой системе напряжение генерируется с использованием микроволновых источников энергии. Таких как клистрон. И эта мощность передается через волновод, который защищает от отраженной мощности. А также тюнер, который соответствует импедансу микроволнового источника с другими элементами. Приемная секция состоит из антенны. Она принимает мощность микроволн и схему согласования импеданса и фильтра. Эта приемная антенна вместе с выпрямляющим устройством может быть диполем. Соответствует выходному сигналу с подобным звуковым оповещением выпрямительного блока. Блок приемника также состоит из подобной секции, состоящей из диодов, которые используются для преобразования сигнала в оповещение постоянного тока. Эта система передачи использует частоты в диапазоне от 2 ГГц до 6 ГГц.

Беспроводная передача электроэнергии с помощью который реализовал генератор с применением подобных магнитных колебаний. Суть заключается в том, что это устройство работало благодаря трем транзисторам.

Использование пучка лазера для передачи мощности в виде световой энергии, которая преобразуется в электрическую на приемном конце. Непосредственно сам материал получает питание с использованием источников, таких как Солнце или любой генератор электроэнергии. И, соответственно, реализует фокусированный свет высокой интенсивности. Размер и форма пучка определяются набором оптики. И этот передаваемый лазерный свет принимается фотогальваническими ячейками, которые преобразуют его в электрические сигналы. Он обычно использует оптоволоконные кабели для передачи. Как и в базовой солнечной энергетической системе, приемник, используемый в распространении на основе лазера, представляет собой массив фотоэлектрических элементов или солнечной панели. Они, в свою очередь, могут преобразовывать бессвязный в электричество.

Сущностные особенности работы устройства

Мощность катушки Тесла заключается в процессе, называемом электромагнитной индукцией. То есть, изменяющееся поле создает потенциал. Он заставляет протекать ток. Когда электричество течет через катушку провода, он генерирует магнитное поле, которое заполняет область вокруг обмотки определенным образом. В отличие от некоторых других экспериментов с высоким напряжением, катушка Тесла выдержала множество проверок и проб. Процесс был достаточно трудоемким и длительным, но результат был успешным, потому и удачно запатентован ученым. Создать подобную катушку можно при наличии определенных составляющих. Для реализации потребуются следующие материалы:

  1. длина 30 см ПВХ (чем больше, тем лучше);
  2. медная эмалированная проволока (вторичный провод);
  3. березовая доска для основания;
  4. 2222A транзистор;
  5. подсоединение (первичный) провод;
  6. резистор 22 кОм;
  7. переключатели и соединительные провода;
  8. аккумулятор 9 вольт.

Этапы реализации устройства Тесла

Для начала необходимо поместить небольшой слот в верхнюю часть трубы, чтобы обернуть один конец провода вокруг. Медленно и осторожно обматывать катушку, следя за тем, чтобы не перекрывать провода и, при этом, не создавать пробелов. Этот шаг - самая сложная и утомительная часть, но потраченное время даст очень качественную и хорошую катушку. Каждые 20, или около того, поворотов помещаются кольца маскирующей ленты вокруг обмотки. Они выступают в качестве барьера. В случае, если катушка начнет распутываться. По завершении нужно обернуть плотную ленту вокруг верхней и нижней части обмотки и распылить ее 2 или 3 слоями эмали.

Затем необходимо подключить первичный и вторичный аккумулятор к батарее. После - включить транзистор и резистор. Меньшая обмотка является основной, а более длительная обмотка - вторичной. Можно дополнительно установить алюминиевую сферу сверху трубы. Кроме того, соединить открытый конец вторичной с добавленной, которая будет действовать как антенна. Необходимо создавать все с тщательной осторожностью, чтобы не дотрагиваться до вторичного устройства при включении питания.

При самостоятельной реализации существует опасность возгорания. Нужно перевернуть выключатель, установить лампу накаливания рядом с беспроводным устройством передачи энергии и наслаждаться световым шоу.

Беспроводная передача через систему солнечной энергии

Традиционные проводные конфигурации реализации энергии обычно требуют наличия проводов между распределенными устройствами и потребительскими единицами. Это создает множество ограничений как стоимость системных затрат на кабели. Потери, понесенные в передаче. А также растраты в распределении. Только сопротивление линии передачи приводит к потере около 20-30% генерируемой энергии.

Одна из самых современных беспроводных систем передачи энергии основана на передаче солнечной энергии с использованием микроволновой печи или луча лазера. Спутник размещен на геостационарной орбите и состоит из фотоэлектрических элементов. Они преобразуют солнечный свет в электрический ток, который используется для питания микроволнового генератора. И, соответственно, реализует мощность микроволн. Это напряжение передается с использованием радиосвязи и принимается на базовой станции. Она представляет собой комбинацию антенны и выпрямителя. И преобразуется обратно в электричество. Требует питания переменного или постоянного тока. Спутник может передавать до 10 МВт мощности радиочастоты.

Если говорить о системе распространения постоянного тока, то даже это невозможно. Так как для этого требуется разъем между источником питания и устройством. Существует такая картина: система полностью лишена проводов, где можно получить мощность переменного тока в домах без каких-либо дополнительных устройств. Там, где есть возможность зарядить свой мобильный телефон без необходимости физически подключаться к гнезду. Конечно, такая система возможна. И множество современных исследователей пытаются создать нечто модернизированное, при этом, изучив роль разработки новых способов беспроводной передачи электроэнергии на расстоянии. Хотя, с точки зрения экономической составляющей, для государств это будет не совсем выгодно, если внедрять такие устройства повсеместно, и заменять стандартное электричество на природное.

Истоки и примеры беспроводных систем

Эта концепция, на самом деле, не является новой. Вся эта идея была разработана Николасом Тесла в 1893 году. Когда он разработал систему освещающих вакуумных ламп с использованием техники беспроводной передачи. Невозможно себе представить, чтобы мир существовал без различных источников зарядки, которые выражены в материальном виде. Чтобы стали возможными мобильные телефоны, домашние роботы, MP3-плееры, компьютер, ноутбуки и другие транспортируемые гаджеты, которые заряжались бы самостоятельно, без каких-либо дополнительных подключений, освобождая пользователей от постоянных проводов. Некоторые из этих устройств могут даже не требовать большого количества элементов. История беспроводной передачи энергии достаточно насыщена, причем, в основном, благодаря разработкам Тесла, Вольта и др. Но, сегодня это остается лишь данными в физической науке.

Основной принцип заключается в преобразовании питания переменного тока в постоянное напряжение с помощью выпрямителей и фильтров. А затем - в возращение в исходное значение на высокой частоте с использованием инверторов. Эта низковольтная с высшими колебаниями мощность переменного тока затем переходит от первичного трансформатора к вторичному. Преобразуется в постоянное напряжение с использованием выпрямителя, фильтра и регулятора. Сигнал переменного тока становится прямым благодаря звуку тока. А также использованию секции выпрямителя моста. Полученный сигнал постоянного тока проходит через обмотку обратной связи, которая действует как схема генератора. При этом заставляет транзистор его проводить в первичный преобразователь в направлении слева направо. Когда ток проходит через обмотку обратной связи, соответствующий ток протекает к первичной части трансформатора в направлении справа налево.

Таким образом работает ультразвуковой способ передачи энергии. Сигнал формируется через первичный преобразователь для обоих полупериодов оповещения переменного тока. Частота звука зависит от количественных показателей колебаний цепей генератора. Этот сигнал переменного тока появляется на вторичной обмотке трансформатора. А когда он подключен к первичному преобразователю другого объекта, напряжение переменного тока составляет 25 кГц. Появляется показание через него в понижающем трансформаторе.

Это напряжение переменного тока выравнивается с помощью мостового выпрямителя. И затем фильтруется и регулируется, чтобы получить выход 5 В для управления светодиодом. Выходное напряжение 12 В от конденсатора используется для питания двигателя вентилятора постоянного тока для его работы. Итак, с точки зрения физики, передача электроэнергии - достаточно развитая область. Однако, как показывает практика, беспроводные системы не до конца развиты и усовершенствованы.

Сам принцип действия наглядно показан на простой поделке , в которой светодиод может загораться без проводов на расстоянии 2 см от источника энергии. Схема, которая действует как повышающий преобразователь напряжения, а также беспроводные передатчик и приемник электроэнергии, может быть улучшена и реализована во многих мозгопроектах .

Шаг 1: Нам понадобится

NPN транзистор — я взял 2N3904, но вы можете использовать любой NPN транзистор (337, BC547 и т.д.), PNP транзистор тоже будет работать только соблюдайте полярность соединений.
обмоточный или изолированный провод — около 3-4 метров (провода можно «добыть» из многих приборов, трансформаторов, динамиков, моторчиков, реле и т.д.)
резистор 1 кОм – будет использоваться для защиты транзистора от сгорания в случае перегрузки, также можно использовать резисторы до 5 кОм, можно даже без резистора, но тогда аккумулятор будет разряжаться быстрее.
светодиод – сгодится любой, главное следовать схеме.
батарейка 1.5В – не применяйте батарейки большего вольтажа, чтобы не повредить транзистор.
ножницы или нож.
паяльник (опционально).
зажигалка(опционально) для удаления изоляции с проводов.

Шаг 2: Смотрим видео процесса

Шаг 3: Резюмируя видео

Итак, на цилиндрический предмет наматываем катушку из 30 витков, это будет катушка А. Далее наматываем вторую катушку того же диаметра, но при этом сначала накручиваем 15 витков и делаем отвод, а затем еще 15 витков, это катушка В. Катушки закрепляем от разматывания любым подходящим способом, например просто делаем узлы из выводов катушек. Важный момент: для правильного функционирования этой поделки диаметры обеих катушек и количество витков должны быть одинаковыми.

Выводы обеих катушек зачищаем и приступаем к пайке цепи. Определяемся с эмиттером, базой и коллектором своего транзистора и к базе припаиваем резистор. Другой вывод резистора припаиваем к свободному выводу катушки В, не к выводу-отводу. Второй свободный вывод катушки В, снова не отвод, припаиваем к коллектору.

Для удобства можно к эмиттеру припаять небольшой кусочек провода, так буде проще подсоединять батарейку.

Цепь приемника собирается легко: к выводам катушки А припаиваем светодиод. И мозгоподелка готова!

Шаг 4: Принципиальная схема

Шаг 5: Наглядный рисунок

Шаг 6: Тестирование


Для приведения самоделки в работоспособное состояние подключаем отвод катушки В к «плюсу» батарейки, а «минус» к эмиттеру транзистора. Затем подносим катушки параллельно друг к другу и диод светится!

Шаг 7: Пояснение

Немного поясню, как все это функционирует.

Передатчик в нашей поделке это цепь осциллятора. Вы может слышали о «цепи ворующей Джоули», которая поразительна схожа с нашей цепью передатчика. В «цепи ворующей Джоули» электроэнергия от батарейки 1.5В преобразуется в более высокое напряжение, но импульсное. Светодиоду требуется 3В, но благодаря «цепи ворующей Джоули» он прекрасно светится и от 1.5В.

«Цепь, ворующая Джоули» известна как конвертер и генератор, цепь, которую мы создали, также является генератором и конвертером. А энергия на светодиод подается посредством индукции, возникающей в катушках, которую можно пояснить на мозгопримере обычного трансформатора.

Предположим, что трансформатор имеет две одинаковые катушки. Тогда во время прохождения электричества по одной катушке она становится магнитом, вторая катушка попадает в магнитное поле первой и, вследствие этого, по ней тоже начинает течь ток. Если напряжение в первой катушке переменное, следовательно, она импульсно теряет свои магнитные свойства, значит и вторая катушка импульсно попадает в магнитное поле первой, то есть и во второй катушке образуется переменное напряжение.

В нашей самоделке катушка передатчика создает магнитное поле, в которое попадает катушка приемника, соединенная со светодиодом, который преобразует полученную энергию в свет!

Представленная мозгоподелка преобразует полученную энергию в свет, но можно использовать ее более разнообразно. Также можно применять принципы этой самоделки для создания фокусов, забавных подарков или научных проектов. Если варьировать диаметры и число витков на катушках, то можно добиться максимальных значений, или можно изменить форму катушек и т.д., возможности не ограничены!

Шаг 9: Устранение неисправностей

При создании этой самоделки возможны следующие проблемы:
Транзистор слишком греется – проверьте номинал резистора, возможно его нужно повысить. Я сначала не использовал резистор, и транзистор при этом сгорел. Или как вариант используйте радиатор для транзистора, а может и другой транзистор, с более высоким значением усиления.
Светодиод не светится – причин может быть много. Проверьте качество соединения, правильно ли распаяли базу и коллектор, убедитесь, что катушки равного диаметра, нет ли короткого замыкания в цепи.

Сегодняшний эксперимент с индукцией закончен, благодарю за внимание и успехов в творчестве!

Решить проблему беспроводной передачи электрической энергии на большие расстояния – давнишняя мечта человечества. Можно представить, насколько бы подешевела электроэнергия без затрат на токопроводную продукцию. Научно-техническая революция не стоит на месте. Есть надежда, что эта мечта сбудется в недалёком будущем. Тому свидетельствуют новые разработки в данной сфере.

История беспроводной передачи энергии

Великий французский физик Ампер в 1820 году путём многочисленных опытов пришёл к выводу о том, что магнитное поле может возбуждать в теле металла электрический ток. Так появился основополагающий закон Ампера.

Майкл Фарадей в 1831 открыл закон индукции, который стал базой для развития такой науки, как электромагнетизм.

Джеймс Максвелл после долгих экспериментов систематизировал свои наблюдения, квинтэссенцией которых в 1864 году стало уравнение Максвелла. Формула объясняла поведение электромагнитного поля.

Никола Тесла усовершенствовал аппарат для генерации электромагнитного поля, изобретённый Генрихом Герцем в 1888 году. На Всемирной выставке в 1893 г., состоявшейся в Чикаго, Тесла продемонстрировал свечение фосфорных лампочек без проводов.

Свой вклад в развитие беспроводной передачи энергии сделал русский учёный Александр Попов. В 1895 г. на заседании Русского физико-химического общества он показал изобретённый им детекторный радиоприёмник.

Далее вплоть до наших дней происходило патентование новых изобретений в области беспроводной передачи электрической энергии. Были произведены масса экспериментов, совершенно большое количество открытий. Последнее достижение в этой сфере – это передача электричества на большие расстояния без проводов с помощью технологии Wi-Fi. В 2017 году изобретён мобильный телефон без батареи.

Как это работает

Беспроводное электричество базируется на таком явлении, как электромагнетизм. В работе участвуют две катушки из металлических проводов. Одна из них подключена к источнику тока, вокруг которой создаётся магнитное поле. Вторая катушка, воспринимая это поле, индуцирует в своей обмотке вторичный электрический ток.

Принципы передачи

В последних разработках учёных из США и Южной Кореи применялись магнитно-резонансные системы CMRS и DCRS. Корейская технология оказалась более совершенной. Удалось передать электроэнергию на 5 метров. Благодаря компактным дипольным катушкам DCRS, можно запитать всех потребителей в помещении средних размеров без проводов.

Важно! Несовершенство современной аппаратуры существенно ограничивает длину пути электричества по воздуху.

Несмотря на это, учёные всего мира заняты получением новых технологий, задача которых – передача энергии на расстоянии в десятки и сотни километров. Уже сегодня развиваются и претворяются в жизнь новые достижения науки в области доставки электроэнергии без проводных линий электропередач.

Технологии

Наиболее перспективными направлениями в разработке новых методов и способов транспортировки электричества без материального контакта являются:

  • ультразвуковой способ;
  • метод электромагнитной индукции;
  • электростатическая индукция;
  • микроволновое излучение;
  • лазерный метод;
  • электропроводность Земли.

Ультразвуковой способ

Студентами Пенсильванского университета (США) на недавней выставке в 2011 году был продемонстрирован способ передачи электротока с помощью ультразвука. Передатчик генерировал акустические волны в ультразвуковом диапазоне, приёмник преобразовывал их в электрический ток. В качестве носителя энергии ультразвук был выбран не случайно. Его воздействие на организм человека абсолютно безвредно.

Несовершенство этого способа заключается в том, что КПД передачи очень низкий, нужны прямая видимость между абонентами и ограниченность расстояния (7-10 метров).

Метод электромагнитной индукции

Работа обыкновенного трансформатора даёт представление о том, как осуществляется передача электричества без проводов методом электромагнитной индукции. В процессе участвуют две катушки. Магнитное поле, возбуждаемое протекающим током по виткам первичной обмотки, индуцирует электрический поток во вторичной обмотке трансформатора.

Примерами использования эффекта электромагнитной индукции могут быть зарядные устройства смартфонов и электрические зубные щётки. Недостатком такого способа передачи энергии является непременная близость катушек. Даже при небольшом увеличении промежутка между обмотками большая часть энергии начинает распыляться в пространстве.

Один из видов электромагнитной индукции – это использование резонанса. Суть способа заключается в том, что приёмник и передатчик функционируют в одном частотном диапазоне. Передающее и приёмное устройства представляют собой соленоид с одним слоем витков. Генерирующий прибор оснащён конденсаторной схемой, с помощью которой он настраивается на частоту приёмника.

Электростатическая индукция

В основе метода заложен принцип прохождения энергии через тело диэлектрика. Способ называют ёмкостной связью. Генератор создаёт в ёмкости электрическое поле, которое возбуждает разницу потенциалов между двумя электродами потребителя.

Никола Тесла для демонстрации беспроводной лампы освещения использовал именно метод электростатической индукции. Лампа получала питание от переменного электрического поля высокой частоты. Она светилась ровно, независимо от её перемещения в пространстве комнаты.

Микроволновое излучение

Специалисты космотехники разработали способ передачи электроэнергии от орбитальных солнечных батарей на космические корабли с помощью радиосигнала микроволнового диапазона. Проблема этого метода состоит в том, что для приёма и передачи пучкового излучения требуются антенны с очень большой диафрагмой.

Учёные НАСА в 1978 году пришли к выводу, что для передачи микроволнового луча частотой 2,45 ГГц излучающая антенна должна иметь диаметр отражающей поверхности 1 км. Приёмная ректенна должна быть диаметром 10 км. Уменьшить эти размеры возможно путём использования сверхкоротких волн. Однако сигналы такого диапазона быстро поглощаются атмосферой или блокируются дождевыми осадками.

Обратите внимание! Безопасная плотность мощности излучаемой энергии равняется 1 мВт/см2. Этой норме отвечает антенна диаметром 10 км с передающей мощностью потенциала 750 МВт.

Лазерный метод

Передачу электроэнергии на большие расстояния без проводов с помощью лазера стали осуществлять сосем недавно. Идея состоит в том, что лазерный луч, несущий в себе энергетический потенциал, попадает на фотоэлемент приёмного устройства, где высокочастотное электромагнитное излучение преобразуется в электрический ток.

Лазерная технология передачи энергии, ранее применяемая в военной области, успешно внедряется в гражданскую сферу деятельности человека. Разработки американских учёных привели к изобретению беспилотного летательного аппарата, получающего энергетическое питание от лазерного луча. В 2006 году был продемонстрирован беспилотник, который мог летать в беспосадочном режиме, питаясь от лазерной установки.

В 2009 году был успешно осуществлён эксперимент в космосе по передаче энергии на один километр мощностью 500Вт.

Электропроводность Земли

Существует теория использования недр и океанов Земли для беспроводной передачи энергии. Электропроводимость гидросферы, залежей металлических руд может быть использована для передачи низкочастотного переменного тока. Электростатическая индукция диэлектрических тел может возникать в огромных залежах кварцевого песка и тому подобных минералов.

Передача электрического тока возможна также через воздушное пространство методом электростатической индукции. Никола Тесла в своё время выдвинул предположение, что в будущем появятся технологии, которые для передачи электроэнергии будут использовать землю, океанические воды и атмосферу планеты.

Всемирная беспроводная система

Впервые о Всемирной беспроводной системе передачи электроэнергии стало известно от великого учёного Теслы. В 1904 году он заявил, что создание ВБС, используя высокую электрическую проводимость плазмы и Земли, вполне осуществимо.

Реальные проекты в наши дни

Из всего того, что на сегодня предлагает рынок электротехники, относятся к беспроводной передаче электроэнергии зарядные устройства для смартфонов, электрические зубные щётки. В них используется принцип электромагнитной индукции.

В авиастроении началось серийное производство летательных беспилотных аппаратов, питающихся за счёт беспроводной передачи электричества. Небольшой микроволновый вертолёт с ректенной может подниматься на высоту до 15 метров над землёй. Появились беспилотники, которые могут летать в зоне видимости лазерного луча.

Китайский производитель бытовой техники Haier Group с 2010 года выпускает беспроводные LCD телевизоры.

Перспективы беспроводной передачи электричества

Сейчас ведутся исследовательские работы, и разрабатываются проекты создания электромобилей, которые будут передвигаться по дорожному покрытию с токопроводом, который индуцирует электрический ток в моторе транспорта.

Ряд передовых фирм заняты разработкой беспроводных источников питания, которые смогут снабжать электроэнергией всех потребителей в пределах одного помещения.

В перспективе появление трасс, состоящих из ряда беспроводных источников электричества, которые смогут обеспечить перемещение летательных аппаратов на большие расстояния.

С появлением новых материалов, усовершенствованных приборов и изобретений беспроводная передача электроэнергии в недалёком будущем охватит все сферы деятельности человека.

Видео

Основы беспроводной зарядки

Беспроводная передача электрической энергии (WPT) дает нам шанс избавиться от тирании кабелей питания. В настоящее время эта технология проникает во все виды устройств и систем. Давайте взглянем на нее!

Беспроводной путь

Большинство современных жилых домов и коммерческих зданий питаются от сетей переменного тока. Электростанции генерируют электричество переменного тока, которое доставляется в дома и офисы с помощью высоковольтных линий электропередачи и понижающих трансформаторов.

Электричество поступает в распределительный щит, а затем электропроводка доставляет электричество к оборудованию и устройствам, которые мы используем каждый день: светильники, кухонная техника, зарядные устройства и так далее.

Все компоненты стандартизованы. Любое устройство, рассчитанное на стандартные ток и напряжение, будет работать от любой розетки по всей стране. Хотя стандарты разных стран и различаются между собой, в конкретной электрической системе любое устройство будет работать при условии соблюдения стандартов данной системы.

Тут кабель, там кабель... Большинство наших электрических устройств обладает кабелем питания от сети переменного тока.

Технология беспроводной передачи электроэнергии

Беспроводная передача электрической энергии (WPT) позволяет подавать питание через воздушный зазор без необходимости использования электрических проводов. Беспроводная передача электроэнергии может обеспечить питание от источника переменного тока для совместимых аккумуляторов или устройств без физических разъемов и проводов. Беспроводная передача электрической энергии может обеспечить заряд мобильных телефонов и планшетных компьютеров, беспилотных летательных аппаратов, автомобилей и прочего транспортного оборудования. Она может даже сделать возможной беспроводную передачу в космосе электроэнергии, полученной от солнечных панелей.

Беспроводная передача электрической энергии начала свое быстрое развитие в области бытовой электроники, заменяя проводные зарядные устройства. На выставке CES 2017 будет показано множество устройств, использующих беспроводную передачу электроэнергии.

Однако концепция передачи электрической энергии бес проводов возникла примерно в 1890-х годах. Никола Тесла в своей лаборатории в Колорадо Спрингс мог без проводов зажечь электрическую лампочку, используя электродинамическую индукцию (используемой в резонансном трансформаторе).


Были зажжены три лампочки, размещенные на расстоянии 60 футов (18 метров) от источника питания, и демонстрация была задокументирована. У Теслы были большие планы, он надеялся, что его башня Ворденклиф , расположенная на Лонг-Айленд, будет без проводов передавать электрическую энергию через Атлантический океан. Этого никогда не произошло из-за различных проблем, в том числе, и с финансированием и сроками.

Беспроводная передача электрической энергии использует поля, создаваемые заряженными частицами, для переноса энергии через воздушный зазор между передатчиками и приемниками. Воздушный зазор закорачивается с помощью преобразования электрической энергии в форму, которая может передаваться по воздуху. Электрическая энергия преобразуется в переменное поле, передается по воздуху, и затем с помощью приемника преобразуется в пригодный для использования электрический ток. В зависимости от мощности и расстояния, электрическая энергия может эффективно передаваться через электрическое поле, магнитное поле или электромагнитные волны, такие как радиоволны, СВЧ излучение или даже свет.

В следующей таблице перечислены различные технологии беспроводной передачи электрической энергии, а также формы передачи энергии.

Технологии беспроводной передачи электрической энергии (WPT)
Технология Переносчик электрической энергии Что позволяет передавать электрическую энергию
Индуктивная связь Магнитные поля Витки провода
Резонансная индуктивная связь Магнитные поля Колебательные контуры
Емкостная связь Электрические поля Пары проводящих пластин
Магнитодинамическая связь Магнитные поля Вращение постоянных магнитов
СВЧ излучение Волны СВЧ Фазированные ряды параболических антенн
Оптическое излучение Видимый свет / инфракрасное излучение / ультрафиолетовое излучение Лазеры, фотоэлементы

Qi зарядка, открытый стандарт для беспроводной зарядки

В то время как некоторые из компаний, обещающих беспроводную передачу электрической энергии, всё еще работают над своими продуктами, уже существует стандарт Qi (произносится как «ци») зарядки, и уже доступны использующие его устройства. Консорциум беспроводной электромагнитной энергии (Wireless Power Consortium, WPC), созданный в 2008 году, разработал стандарт Qi для зарядки аккумуляторов. Данный стандарт поддерживает и индуктивные, и резонансные технологии зарядки.

При индуктивной зарядке электрическая энергия передается между катушками индуктивности в передатчике и приемнике, расположенными на близком расстоянии. Индуктивные системы требуют, чтобы катушки индуктивности находились в непосредственной близости и были выровнены друг с другом; обычно устройства находятся в непосредственном контакте с зарядной панелью. Резонансная зарядка не требует тщательного выравнивания, а зарядные устройства могут обнаружить и зарядить устройство на расстоянии до 45 мм; таким образом, резонансные зарядные устройства могут быть встроены в мебель или установлены между полками.

Наличие логотипа Qi означает, что устройство зарегистрировано и сертифицировано Консорциумом беспроводной электромагнитной энергии WPC.

В начале Qi зарядка обладала небольшой мощностью, около 5 Вт. Первые смартфоны, использующие Qi зарядку, появились в 2011 году. В 2015 году мощность Qi зарядки увеличилась до 15 Вт, что позволяет осуществлять быструю зарядку устройств.

Следующий рисунок от Texas Instruments показывает, что охватывает стандарт Qi.

Совместимость с Qi гарантировано могут обеспечить только те устройства, которые перечислены в регистрационной базе данных Qi . В настоящее время там содержится более 700 продуктов. Важно понимать, что продукты с логотипом Qi были проверены и сертифицированы; и магнитные поля, используемые этими устройствами, не вызовут проблем для таких чувствительных устройств, как мобильные телефоны или электронные паспорта. Зарегистрированные устройства будут гарантировано работать с зарегистрированными зарядными устройствами.

Физика беспроводной передачи электрической энергии

Беспроводная передача электрической энергии для бытовых устройств является новой технологией, но принципы, лежащие в ее основе, известны давно. Там, где участвуют электричество и магнетизм, по-прежнему руководствуются уравнениями Максвелла, и передатчики посылают энергию на приемники так же, как и в других формах беспроводной связи. Однако, беспроводная передача электроэнергии отличается от них основной целью, которая заключается в передаче самой энергии, а не закодированной в ней информации.

Электромагнитные поля, участвующие в беспроводной передаче электрической энергии, могут быть достаточно сильными, и поэтому необходимо принимать во внимание безопасность человека. Воздействие электромагнитного излучения может вызвать проблемы, а также существует возможность того, что поля, создаваемые передатчиками электрической энергии, могут помешать работе носимых или имплантированных медицинских устройств.

Передатчики и приемники встраиваются в устройства беспроводной передачи электрической энергии так же, как и аккумуляторы, которые будут ими заряжаться. Реальные схемы преобразования будут зависеть от используемой технологии. Кроме самой передачи электроэнергии, WPT система должна обеспечить связь между передатчиком и приемником. Это гарантирует, что приемник сможет уведомить зарядное устройство о том, что аккумулятор полностью заряжен. Связь также позволяет передатчику обнаружить и идентифицировать приемник, чтобы подстроить значение мощности, передаваемой на нагрузку, а также контролировать, например, температуру аккумулятора.

В беспроводной передаче электрической энергии имеет значение выбор концепции либо ближнего, либо дальнего поля. Технологии передачи, количество энергии, которое может быть передано, и требования к расстоянию влияют на то, будет ли система использовать излучение ближнего поля или излучение дальнего поля.

Точки, для которых расстояние от антенны значительно меньше одной длины волны, находятся в ближней зоне. Энергия в ближней зоне неизлучающая, и колебания магнитного и электрического полей не зависят друг от друга. Емкостная (электрическая) и индуктивная (магнитная) связи могут использоваться для передачи энергии к приемнику, расположенному в ближнем поле передатчика.

Точки, для которых расстояние от антенны больше примерно двух длин волны, находятся в дальней зоне (между ближней и дальней зонами существует переходная область). Энергия в дальней зоне передается в виде обычного электромагнитного излучения. Перенос энергии в дальней зоне также называют лучом энергии. Примерами передачи в дальней зоне являются системы, которые используют для передачи энергии на большие расстояния мощные лазеры или СВЧ излучение.

Где работает беспроводная передача электрической энергии (WPT)

Все технологии WPT в настоящее время находятся на стадии активных исследований, большая часть сосредоточена на максимизации эффективности передачи энергии и иследованию технологий для магнитной резонансной связи . Кроме того, самыми амбициозными являются идеи оснащения WPT системой помещений, в которых человек будет находиться, а носимые им устройства будут заряжаться автоматически.

Многие годы ученые бьются над вопросом минимизации электрических расходов. Есть разные способы и предложения, но все, же самой известной теорией является беспроводная передача электричества. Предлагаем рассмотреть, как она выполняется, кто является её изобретателем и почему пока что её не воплотили в жизнь.

Теория

Беспроводное электричество – это буквально передача электрической энергии без проводов. Люди часто сравнивают беспроводную передачу электрической энергии с передачей информации, например, радио, сотовые телефоны, или Wi-Fi доступ в Интернет. Основное различие заключается в том, что с радио-или СВЧ-передач – это технология, направленная на восстановление и транспортировку именно информации, а не энергии, которая изначально была затрачена на передачу.

Беспроводной электроэнергии является относительно новой областью технологии, но достаточно динамично развивающейся. Сейчас разрабатываются методы, как эффективно и безопасно передавать энергию на расстоянии без перебоев.

Как работает беспроводное электричество

Основная работа основана именно на магнетизме и электромагнетизме, как и в случае с радиовещанием. Беспроводная зарядка, также известна как индуктивная зарядка, основана на нескольких простых принципах работы, в частности технология требует наличия двух катушек. Передатчика и приемника, которые вместе генерируют переменное магнитное поле непостоянного тока. В свою очередь это поле вызывает напряжение в катушке приемника; это может быть использовано для питания мобильного устройства или зарядки аккумулятора.

Если направить электрический ток через провод, то вокруг кабеля создается круговое магнитное поле. Несмотря на то, что магнитное поле воздействует и на петлю, и на катушку сильнее всего оно проявляется именно на кабеле. Когда возьмете второй моток проволоки, на который не поступает электрический ток, проходящий через него, и место, в которое мы установим катушку в магнитном поле первой катушки, электрический ток от первой катушки будет передаваться через магнитное поле и через вторую катушку, создавая индуктивную связь.

Как пример возьмем электрическую зубную щетку. В ней зарядное устройство подключено к розетке, которая отправляет электрический ток на витой провод внутри зарядного устройства, создающего магнитное поле. Существует вторая катушка внутри зубной щетки, когда ток начинает поступать и на неё, благодаря образовавшемуся МП, начинается заряд щетки без её непосредственного подключения к сети питания 220 В.

История

Беспроводная передача энергии в качестве альтернативы передачи и распределения электрических линий, впервые была предложена и продемонстрирована Никола Тесла. В 1899 году Тесла презентовал беспроводную передачу на питание поля люминесцентных ламп, расположенных в двадцати пяти милях от источника питания без использования проводов. Но в то время было дешевле сделать проводку из медных проводов на 25 миль, а не строить специальные электрогенераторы, которых требует опыт Тесла. Патент ему так и не выдали, а изобретение осталось в закромах науки.

В то время как Тесла был первым человеком, который смог продемонстрировать практические возможности беспроводной связи еще в 1899 году, сегодня, в продаже есть совсем немного приборов, это беспроводные щетки наушники, зарядки для телефонов и прочее.

Технология беспроводной связи

Беспроводной передачи энергии включает в себя передачу электрической энергии или мощности на расстоянии без проводов. Таким образом, основная технология лежит на концепции электроэнергии, магнетизма и электромагнетизма.

Магнетизм

Это фундаментальная сила природы, которая провоцирует определенные типы материала притягивать или отталкивать друг друга. Единственными постоянными магнитами считаются полюса Земли. Ток потока в контуре генерирует магнитные поля, которые отличаются от осциллирующих магнитных полей скоростью и временем, потребным для генерации переменного тока (AC). Силы, которые при этом появляются, изображает схема ниже.

Так появляется магнетизм

Электромагнетизм – это взаимозависимость переменных электрических и магнитных полей.

Магнитная индукция

Если проводящий контур подключен к источнику питания переменного тока, он будет генерировать колебательное магнитное поле внутри и вокруг петли. Если второй проводящий контур расположен достаточно близко, он захватит часть этого колеблющегося магнитного поля, которое в свою очередь порождает или индуцирует электрический ток во второй катушке.

Видео: как происходит беспроводная передача электричества

Таким образом, происходит электрическая передача мощности от одного цикла или катушки к другой, что известно как магнитная индукция. Примеры такого явления используются в электрических трансформаторах и генератора. Это понятие основано на законах электромагнитной индукции Фарадея. Там, он утверждает, что, когда есть изменение магнитного потока, соединяющегося с катушкой ЭДС, индуцированного в катушке, то величина равна произведению числа витков катушки и скорости изменения потока.


Мощностная муфта

Эта деталь необходима, когда одно устройство не может передавать энергию на другой прибор.

Магнитная связь генерируется, когда магнитное поле объекта способно индуцировать электрический ток с другими устройствами в поле его досягаемости.

Два устройства, как говорят, взаимно индуктивно-связанной или магнитную связь, когда они выполнены так, что изменение тока при том, что один провод индуцирует напряжение на концах другого провода посредством электромагнитной индукции. Это связано с взаимной индуктивности

Технология


Принцип индуктивной связи

Два устройства, взаимно индуктивно-связанные или имеющие магнитную связь, выполнены так, что изменение тока при том, что один провод индуцирует напряжение на концах другого провода, производится посредством электромагнитной индукции. Это связано с взаимной индуктивностью.
Индуктивная связь является предпочтительной из-за её способности работать без проводов, а также устойчивости к ударам.

Резонансная индуктивная связь является сочетанием индуктивной связи и резонанса. Используя понятие резонанса можно заставить два объекта работать зависимо от сигналов друг друга.


Как видно из схемы выше, резонанс обеспечивает индуктивность катушки. Конденсатор подключен параллельно к обмотке. Энергия будет перемещаться назад и вперед между магнитным полем, окружающим катушку и электрическим полем вокруг конденсатора. Здесь потери на излучение будет минимальными.

Существует также концепция беспроводной ионизированной связи.

Она тоже воплотима в жизнь, но здесь необходимо приложить немного больше усилий. Эта техника уже существует в природе, но вряд ли есть целесообразность ее реализации, поскольку она нуждается в высоком магнитном поле, от 2,11 М /м . Её разработал гениальный ученый Ричард Волрас, разработчик вихревого генератора, который посылает и передает энергию тепла на огромные расстояния, в частности при помощи специальных коллекторов. Самой простой пример такой связи – это молния.

Плюсы и минусы

Конечно, у этого изобретения есть свои преимущества перед проводными методиками, и недостатки. Предлагаем их рассмотреть.

К достоинствам относятся:

  1. Полное отсутствие проводов;
  2. Не нужны источники питания;
  3. Необходимость батареи упраздняется;
  4. Более эффективно передается энергия;
  5. Значительно меньше нужно технического обслуживания.

К недостаткам же можно отнести следующее:

  • Расстояние ограничено;
  • магнитные поля не так уж и безопасны для человека;
  • беспроводная передача электричества, с помощью микроволн или прочих теорий практически неосуществима в домашних условиях и своими руками;
  • высокая стоимость монтажа.