Электромагнитные волны уравнения максвелла и волновое уравнение. Уравнения максвелла и волновое уравнение для электромагнитной волны в вакууме

Теперь стоило бы заняться немного математикой; мы запишем уравнения Максвелла в более простой форме. Вы, пожалуй, сочтете, что мы усложняем их, но если вы наберетесь терпения, то внезапно обнаружите их большую простоту. Хотя вы уже вполне привыкли к каждому из уравнений Максвелла, имеется все же много частей, которые стоит соединить воедино. Вот как раз этим мы и займемся.

Начнем с - простейшего из уравнений. Мы знаем, что оно подразумевает, что - есть ротор чего-то. Поэтому, если вы записали

то считайте, что уже решили одно из уравнений Максвелла. (Между прочим, заметьте, что оно остается верно для другого вектора , если , где - любое скалярное поле, потому что ротор - нуль и - по-прежнему то же самое. Мы говорили об этом раньше.)

Теперь разберем закон Фарадея , потому что он не содержит никаких токов или зарядов. Если мы запишем как и продифференцируем по , то сможем переписать закон Фарадея в форме

.

Поскольку мы можем дифференцировать сначала либо по времени, либо по координатам, то можно написать это уравнение также в виде

. (18.17)

Мы видим, что - это вектор, ротор которого равен нулю. Поэтому такой вектор есть градиент чего-то. Когда мы занимались электростатикой, у нас было , и мы тогда решили, что - само градиент чего-то. Пусть это градиент от (минус для технических удобств). То же самое сделаем и для ; мы полагаем

. (18.18)

Мы используем то же обозначение , так что в электростатическом случае, когда ничто не меняется со временем и исчезает, будет нашим старым . Итак, закон Фарадея можно представить в форме

. (18.19)

Мы уже решили два из уравнений Максвелла и нашли, что для описания электромагнитных полей и нужны четыре потенциальные функции: скалярный потенциал и векторный потенциал , который, разумеется, представляет три функции.

Итак, определяет часть , так же как и . Что же произойдет, когда мы заменим на ? В общем, должно было бы измениться, если не принять особых мер. Мы можем, однако, допустить, что изменяется так, чтобы не влиять на поля и (т. е. не меняя физики), если будем всегда изменять и вместе по правилам

. (18.20)

Тогда ни , ни , полученные из уравнения (18.19), не меняются.

Раньше мы выбирали , чтобы как-то упростить уравнения статики. Теперь мы не собираемся так поступать; мы хотим сделать другой выбор. Но подождите немного, прежде чем мы скажем, какой это выбор, потому что позднее станет ясно, почему вообще делается выбор.

Сейчас мы вернемся к двум оставшимся уравнениям Максвелла, которые свяжут потенциалы и источники и . Раз мы можем определить и из токов и зарядов, то можно всегда получить и из уравнений (18.16) и (18.19) и мы будем иметь другую форму уравнений Максвелла.

Начнем с подстановки уравнения (18.19) в ; получаем

;

это можно записать еще в виде

. (18.21)

Таково первое уравнение, связывающее и с источниками.

Наше последнее уравнение будет самым трудным. Мы начнем с того, что перепишем четвертое уравнение Максвелла:

,

а затем выразим и через потенциалы, используя уравнения (18.16) и (18.19):

.

Первый член можно переписать, используя алгебраическое тождество ; мы получаем

. (18.22)

Не очень-то оно простое!

К счастью, теперь мы можем использовать нашу свободу в произвольном выборе дивергенции . Сейчас мы собираемся сделать такой выбор, чтобы уравнения для и для разделились, но имели одну и ту же форму. Мы можем сделать это, выбирая

. (18.23)

Когда мы поступаем так, то второе и третье слагаемые в уравнении (18.22) погашаются, и оно становится много проще:

. (18.24)

И наше уравнение (18.21) для принимает такую же форму:

. (18.25)

Какие красивые уравнения! Они великолепны прежде всего потому, что хорошо разделились - с плотностью заряда стоит , а с током стоит . Далее, хотя левая сторона выглядит немного нелепо - лапласиан вместе с , когда мы раскроем ее, то обнаружим

. (18.26)

Это уравнение имеет приятную симметрию по , , , ; здесь нужно, конечно, потому, что время и координаты различаются; у них разные единицы.

Уравнения Максвелла привели нас к нового типа уравнению для потенциалов и , но с одной и той же математической формой для всех четырех функций , , и . Раз мы научились решать эти уравнения, то можем получить и из и . Мы приходим к другой форме электромагнитных законов, в точности эквивалентной уравнениям Максвелла; с ними во многих случаях обращаться гораздо проще. и

Система уравнений Максвелла включает в себя четыре основных уравнения

, (3.2)

, (3.3)

. (3.4)

Эта система дополняется тремя материальными уравнениями, определяющими связь между физическими величинами, входящими в уравнения Максвелла:

(3.5)

Вспомним физический смысл этих математических фраз.

В первом уравнении (3.1) утверждается, что электростатическое поле может быть создано только электрическими зарядами.В этом уравнении- вектор электрического смещения, ρ - объемная плотность электрического заряда.

Поток вектора электрического смещения через любую замкнутую поверхность равен заряду, заключенному внутри этой поверхности.

Как свидетельствует эксперимент, поток вектора магнитной индукции через замкнутую поверхность всегда равен нулю (3.2)

Сопоставление уравнений (3.2) и (3.1) позволяет сделать вывод о том, что магнитные заряды в природе отсутствуют.

Огромный интерес и важность представляют уравнения (3.3) и (3.4). Здесь рассматриваются циркуляции векторов напряженности электрического () и магнитного () полей по замкнутому контуру.

В уравнении (3.3) утверждается, что переменное магнитное поле () является источником вихревого электрического поля ().Это не что иное, как математическая запись явления электромагнитной индукции Фарадея.

В уравнении (3.4) устанавливается связь магнитного поля и переменного электрического. Согласно этому уравнению магнитное поле может быть создано не только током проводимости (), но и переменным электрическим полем.

В этих уравнениях:

- вектор электрического смещения,

H - напряженность магнитного поля,

E - напряженность электрического поля,

j - плотность тока проводимости,

μ - магнитная проницаемость среды,

ε -диэлектрическая проницаемость среды.

    1. Электромагнитные волны. Свойства электромагнитных волн

В прошлом семестре, завершая рассмотрение системы уравнений классической электродинамики Максвелла, мы установили, что совместное решение двух последних уравнений (о циркуляции векторов и) приводит к дифференциальному волновому уравнению.

Так мы получили волновое уравнение «Y» волны:

. (3.6)

Электрическая компонента y – волны распространяется в положительном направлении оси X с фазовой скоростью

(3.7)

Аналогичное уравнение описывает изменение в пространстве и во времени магнитного поля y – волны:

. (3.8)

Анализируя полученные результаты, можно сформулировать ряд свойств, присущих электромагнитным волнам.

1. Плоская «y» - волна является линейно поляризованной поперечной волной. Векторы напряженности электрического (), магнитного () поля и фазовой скорости волны () взаимно перпендикулярны и образуют «правовинтовую» систему (рис.3.1).

2. В каждой точке пространства компонента волны H z пропорциональна напряженности электрического поляE y:

Здесь знаку «+» соответствует волна, распространяющаяся в положительном направлении оси X. Знак «-» - в отрицательном.

3. Электромагнитная волна движется вдоль оси X с фазовой скоростью

Здесь
.

При распространении электромагнитной волны в вакууме (ε = 1, μ = 1) фазовая скорость

Здесь электрическая постоянная ε 0 = 8.85 · 10 -12

магнитная постоянная μ 0 = 4π · 10 -7

.

.

Совпадение скорости электромагнитной волны в вакууме со скоростью света стало первым доказательством электромагнитной природы света.

В вакууме упрощается связь напряженности магнитного и электрического полей в волне.

.

При распространении электромагнитной волны в диэлектрической среде (μ = 1)
и
.

1. Уравнения Максвелла и волновое уравнение. Электромагнитное поле описывается уравнениями Максвелла: Рассмотрим однородную и изотропную, электрически нейтральную, непроводящую среду.

1. Уравнения Максвелла и волновое уравнение. В рассматриваемой среде (ε = const. , μ = const. , = 0) эти уравнения можно переписать так: (1) (2) (3) (4) Вычислим ротор от правой и левой части уравнения (1).

1. Уравнения Максвелла и волновое уравнение. Согласно уравнению (4) После вычисления ротора от левой части уравнения (1) получаем:

1. Уравнения Максвелла и волновое уравнение. Вычислим ротор от правой части уравнения (1). Согласно уравнению (3) После вычисления ротора от правой и левой части уравнения (1) получаем:

1. Уравнения Максвелла и волновое уравнение. Сравним полученное уравнение с общим видом дифференциального волнового уравнения: где v – фазовая скорость распространения волны. Полученное нами уравнение для напряжённости электрического поля совпадает волновым уравнением, если Решениями волнового уравнения являются плоские волны вида

1. Уравнения Максвелла и волновое уравнение. Решениями волнового уравнения для вектора напряжённости электрического поля также являются плоские волны. В данном случае в пространстве распространяются колебания напряжённости электрического поля. Фазовая скорость распространения в пространстве таких колебаний:

1. Уравнения Максвелла и волновое уравнение. Аналогично можно вывести волновое уравнение, рассматривая напряжённость магнитного поля. В рассматриваемой среде (ε = const. , μ = const. , = 0): (1) (2) (3) (4) Вычислим ротор от правой и левой части уравнения (3). Выполним преобразования, как и в воспользуемся уравнением (2) и получим: предыдущем случае,

1. Уравнения Максвелла и волновое уравнение. Это уравнение можно переписать так: где - фазовая скорость волны. - решение волнового уравнения, уравнение плоской волны. Отметим, что решения одинаковы как для электрического поля, так и для магнитного. Колебания напряжённостей электрического и одновременно происходят поле магнитного одинаковой скоростью. Эти колебания совпадают по фазе. Колебания напряжённостей электрического и магнитного полей, распространяющиеся в пространстве, называются электромагнитными волнами.

1. Уравнения Максвелла и волновое уравнение. Фазовая скорость электромагнитной волны В вакууме, когда ε = 1 и μ = 1, В некоторой среде, когда ε > 1 и μ > 1, В оптике величина n называется показателем преломления. Физический смысл показателя преломления - он показывает, во сколько раз скорость света (ЭМВ) в данной среде меньше, чем в вакууме.

1. Уравнения Максвелла и волновое уравнение. Основные выводы: 1. Уравнения Максвелла допускают волновые решения. 2. Электромагнитная полна представляет собой колебания напряженностей электрического и магнитного полей, распространяющихся в пространстве. 3. Скорость распространения ЭМВ в вакууме 4. Скорость распространения ЭМВ в любой диэлектрической среде меньше, чем в вакууме: n – показатель преломления среды.

2. Экспериментальное открытие электромагнитных волн. Схема опыта Герца. Джеймс Кларк Максвелл (18311879) Генрих Рудольф Герц (1857 - 1894)

3. Поперечность ЭМВ. Некоторые свойства ЭМВ мы уже отметили: 1. Скорость распространения ЭМВ в вакууме 2. Скорость распространения ЭМВ в любой диэлектрической среде меньше, чем в вакууме: n – показатель преломления среды. Ещё одним важнейшим свойством ЭМВ является её поперечность.

3. Поперечность ЭМВ. Если плоская ЭМВ распространяется вдоль оси OX выбранной нами системы отсчёта, то её уравнение можно записать так: Здесь ω – циклическая (круговая) частота колебаний волны, k – волновое число. Известно, что волновые поверхности плоской волны - плоскости. Если волна распространяется вдоль оси OX, то её волновые поверхности есть плоскости, параллельные плоскости YZ (перпендикулярные OX).

3. Поперечность ЭМВ распространяется вдоль оси OX, изменение векторов E и H описывается уравнениями Каждая из волновых поверхностей характеризуется одним значением координаты X. Поэтому в пределах одной волновой поверхности в данный момент времени значения вектора напряжённости одинаковы. Это справедливо и для вектора E и для вектора H. Значения всех трёх компонент вектора E и всех трёх компонент вектора H зависят только от координаты X и не зависят от координат Y и Z.

3. Поперечность ЭМВ. Рассмотрим уравнение, распространение ЭМВ: В левой части этого уравнения То же по компонентам: описывающее

3. Поперечность ЭМВ. В направлениях, перпендикулярных направлению распространения волны, производные по времен от H нулю не равны, следовательно, в этих направлениях может существовать переменное магнитное поле. В направлении, параллельном направлению распространения волны, может существовать только стационарное магнитное поле.

3. Поперечность ЭМВ. Если рассмотреть уравнение, описывающее распространение ЭМВ и, как и в предыдущем случае, переписать его в виде проекций на оси координат, и учесть, что все компоненты вектора H зависят только от координаты x, получим В направлениях, перпендикулярных направлению распространения волны, может существовать переменное электрическое поле. В направлении, параллельном направлению распространения волны, может существовать только стационарное электрическое поле.

4. Поляризация ЭМВ. Если колебания вектора напряжённости электрического поля в волне каким-либо образом упорядочены, волна называется поляризованной. Если колебания вектора напряжённости электрического поля в волне происходят в одной плоскости, волна называется линейно поляризованной. Если плоскость, в которой происходят колебания вектора напряжённости электрического поля в волне вращается, волна называется поляризованной по кругу (по эллипсу).

5. Соотношение между E и H в ЭМВ. Рассмотрим уравнение, описывающее распространение ЭМВ: В левой части этого уравнения

5. Соотношение между E и H в ЭМВ. Учтём, что вектор E зависит только от координаты x Рассмотрим уравнение, описывающее распространение ЭМВ: В левой части этого уравнения

5. Соотношение между E и H в ЭМВ. Учтём, что вектор H зависит только от координаты x Решениями волнового уравнения являются плоские волны (волна распространяется вдоль OX, векторы напряжённостей перпендикулярны)

5. Соотношение между E и H в ЭМВ. Как мы установили ранее, Подставим в это уравнение выражения дл напряжённостей полей. Это соотношение должно выполняться в любой момент времени и в точке с любой координатой x.

5. Соотношение между E и H в ЭМВ. Волновое число k связано с циклической частотой ω соотношением

6. Вектор Умова-Пойнтинга. Известно, что плотность энергии электрического поля а плотность энергии магнитного поля Эти выражения можно получить из уравнений Максвелла. Рассмотрим уравнения: (1) (2) Умножим уравнение (1) на вектор H скалярно, а уравнение (2) умножим скалярно на вектор E.

6. Вектор Умова-Пойнтинга. Аналогично преобразуем второе уравнение: Мы рассматриваем непроводящую среду, поэтому j = 0. Итого, мы получили два уравнения: Вычтем из второго уравнения первое:

6. Вектор Умова-Пойнтинга. Выясним физический смысл полученного выражения. Обозначим - вектор Умова-Пойнтинга. - плотность энергии электромагнитного поля. Преобразуем левую часть уравнения:

6. Вектор Умова-Пойнтинга. Применим к левой части уравнения теорему Остроградского-Гаусса: Здесь - поверхность, окружающая объём V. Чтобы равенство не нарушилось, вычислим интеграл по объёму V и в правой части: Здесь Wэм - энергия электромагнитного поля в объёме V. Итого, получилось:

6. Вектор Умова-Пойнтинга. Таким образом, поток вектора Умова-Пойнтинга через некоторую замкнутую поверхность равен убыли энергии электромагнитного поля в объёме, ограниченном этой замкнутой поверхностью. Согласно определению, Таким образом, Эти векторы образуют правую тройку. E и H лежат в плоскости, перпендикулярной направлению распространения волны, направление S совпадает с направлением распространения волны.

7. Энергия, переносимая электромагнитной волной. Известно, что плотность энергии электромагнитного поля Если в пространстве распространяется электромагнитная волна, то в данной точке пространства Плотность энергии магнитного поля В любой момент времени

7. Энергия, переносимая электромагнитной волной. Введём новую величину, S, и назовём её модулем плотности потока энергии. То есть эта величина будет равна энергии, проходящей через единицу площади в единицу времени W – энергия, - площадь, t – время. Модуль плотности потока энергии (эта величина равна энергии, проходящей через единицу площади в единицу времени) равен модулю вектора Умова – Пойнтинга.

7. Энергия, переносимая электромагнитной волной. Энергия электромагнитной волны, проходящая через единицу площади в единицу времени, равна модулю вектора Умова – Пойнтинга.

В технике СВЧ интерес представляет в основном поля, изменяющиеся во времени по гармоническому закону (т.е. носят синусоидальный характер).

Пользуясь комплексным методом, запишем векторы электрического и магнитного полей:

,
, (33)

где – круговая частота
.

Подставим эти выражения в I и II – е уравнения Максвелла

,
.

После дифференцирования имеем:

, (34)

. (35)

Уравнение (34) можно преобразовать к виду:

,

где
– комплексная относительная диэлектрическая проницаемость с учётом потерь в среде.

Отношение мнимой части комплексной относительной диэлектрической проницаемости к действительной представляет тангенс угла диэлектрических потерь
. Таким образом уравнения Максвелла для гармонических колебаний при отсутствии свободных зарядов
имеют вид:

,(36)

, (37)

, (38)

. (39)

В таком виде уравнения Максвелла неудобны и их преобразуют.

Уравнения Максвелла легко сводятся к волновым уравнениям, в которые входит только один из векторов поля. Определяя
из (37) и подставляя его в (36), получаем:

раскроем левую часть используя формулу III:

Введём обозначения
,тогда с учётом
, получим:

. (40)

Такое же уравнение можно получить относительно

. (41)

Уравнения (40) – (41) получили название уранений Гельмгольца. Они описывают распространение волн в пространстве и являются доказательством того, что изменение во времени электрического и магнитного полей приводит к распространению электромагнитных волн в пространстве.

Эти уравнения справедливы для любой системы координат. При использовании прямоугольной системы координат будем иметь:

, (42)

, (43)

где
– едичничные векторы

Если подставить соотношение (42) и (43) в уравнения (40) и (41), то последние распадаются на шесть независимых уравнений:

,
,

, (44)
, (45)

,
,

где
.

В общем случае в прямоугольной ситеме координат для нахождения составляющих поля необходимо решить одно линейное дифференциальное уравнение второго порядка

,

где – одна из составляющих поля, т.е.
. Общее решение этого уравнения имеет вид

, (46)

где
– функция распределения поля в плоскости фронта волны не зависящая от.

Энергетические соотношения в электромагнитном поле. Теорема Умова-Пойнтинга

Одной из важнейших характеристик электромагнитного поля является его энергия. Впервые вопрос об энергии электромагнитного поля был рассмотрен Максвеллом, который показал, что полная энергия поля, заключённого внутри объёма , складывается из энергии электрического поля:

, (47)

и энергии магнитного поля:

. (48)

Таким образом, полная энергия электромагнитного поля равна:

. (49)

В 1874г. проф. Н. А. Умов ввел понятие о потоке энергии, а в 1880г. это понятие было применено Пойнтингом к исследованию электромагнитных волн. Процесс излучения в электродинамике принято характеризовать, определяя в каждой точке пространства вектор Умова-Пойнтинга.

Физически правильные результаты, согласующиеся как с законом сохранения энергии, так и с уравнениями Максвелла, получается в том случае, если выразить вектор Умова-Пойнтинга через мгновенные значения
и
следующим образом:

.

Возьмём первое и второе уравнения Максвелла и умножим первое на , а второе на
и сложим:

,

где .

Таким образом, уравнение (50) можно записать в виде

,

интегрируя по объему и меняя знаки, имеем:

Перейдем от интеграла по объему к интегралу по поверхности

,

или с учетом
получим:

, то
,
,

. (51)

Полученное уравнение выражает закон сохранения энергии в электромагнитном поле (теорему Умова-Пойнтинга.). Левая часть уравнения представляет собой скорость изменения во времени полного запаса энергии электромагнитного поля в рассмотренном объеме
. Первый член правой части есть количество тепла, выделяющегося в проводящих частях объёмаза единицу времени. Второе слагаемое представляет поток вектора Умова-Пойнтинга через поверхность, ограничивающую объем.Вектор
есть плотность потока энергии электромагнитного поля.
Т.к.
, то направление вектора
можно определить по правилу векторного произведения /правилу буравчика/ (рис. 9). В системеСИ вектор
имеет размерность
.

Рисунок 9 – К определению вектора Умова-Пойнтинга

Распространение электромагнитного поля в пространстве - это волновой процесс, описание которого можно получить из уравнений Максвелла. Уравнения Максвелла описывают свойства электромагнитных волн в наиболее общем случае, но их непосредственное использование не всегда удобно. Поэтому для случая линейных и однородных сред можно получить более простые волновые уравнения, из которых следуют все законы геометрической оптики.

1.3.1. Волновые уравнения

В оптике часто рассматривают изменение электрического и магнитного полей независимо друг от друга, и тогда векторный характер поля не является существенным, а электромагнитное поле можно рассматривать и описывать как скалярное (подобно звуковому полю). Скалярная теория значительно проще векторной, и вместе с тем дает возможность достаточно глубоко анализировать распространение световых пучков и процессы образования изображения в оптических системах. В геометрической оптике скалярная теория широко используется именно благодаря тому, что электрическое и магнитное поля в этом случае могут быть описаны независимо друг от друга, а волновые уравнения одинаковы для векторного и скалярного полей.

Рассмотрим вывод волновых уравнений непосредственно из уравнений Максвелла. Возьмем уравнение для ротора электрического поля, определяемого через производную по времени от магнитной индукции:

Векторно домножим это уравнение на :

Учитывая, что (1.5), получим:

Так как дивергенция электрического поля в диэлектрической среде , то в однородной среде , что следует из уравнений Максвелла (4, 5). Тогда получим волновое уравнение для электрической составляющей поля:

(1.3.1)
или

Поскольку , одно векторное уравнение распадается на три скалярных уравнения:

Рассуждая аналогичным образом, можно получить волновое уравнение для магнитной составляющей поля:

(1.3.3)

Поскольку , то это векторное уравнение также распадается на три скалярных уравнения:

Из уравнений Максвелла следует, что каждая из составляющих , , вектора подчиняется абсолютно одному и тому же по форме скалярному уравнению. Поэтому, если требуется знать изменение только какой-нибудь одной из составляющих вектора , мы можем рассматривать векторное поле как скалярное. Перед тем, как окончательно перейти к скалярной теории, следует заметить, что составляющие вектора не являются независимыми функциями, что вытекает из условия . Поэтому, хотя скалярные волновые уравнения являются следствием уравнений Максвелла, обратно перейти от них к уравнениям Максвелла нельзя.

Пусть скалярная величина - это любая из составляющих электрического вектора: ( , или ). Иными словами, это возмущение поля в какой-то точке пространства в какой-то момент времени . Тогда можно записать волновое уравнение в общем виде:

(1.3.5)
где - вторая производная возмущения по пространственным координатам,

Вторая производная возмущения по времени,

Смысл этого уравнения заключается в том, что волна образуется тогда, когда у некоторого возмущения вторая производная по пространственным координатам пропорциональна второй производной по времени.

Можно показать, что скорость распространения волны для диэлектриков связана с электрической и магнитной постоянной среды следующим образом:

Следовательно, скорость распространения волны в пространстве определяется так:

Тогда общий вид волнового уравнения можно записать следующим образом:

Волновое уравнение для одной оси координат:

Отношение скорости света в вакууме к скорости света в среде называется показателем преломления данной среды по отношению к вакууму (index of refraction ):

(1.3.11) где - амплитуда возмущения (функция пространственных координат),
- циклическая частота изменения поля во времени,
- фаза поля (функция пространственных координат).
Рис.1.3.1. Изменение монохроматического поля во времени.

Монохроматическое поле также характеризуется периодом колебаний или частотой :

Причем циклическую частоту можно выразить через частоту :

Гармоническую волну характеризуют также пространственный период - длина волны :

И волновое число :

Излучение с определенной длиной волны обладает соответствующим цветом (рис.1.3.2).


Рис.1.3.2. Спектр видимого излучения.

Постоянными характеристиками, не зависящими от показателя преломления, для монохроматического поля являются: частота , циклическая частота и период колебаний . Длина волны и волновое число меняются в зависимости от показателя преломления, так как меняется скорость распространения света в среде . Итак, частота в среде всегда сохраняется, а длина волны изменяется. Длину волны и волновое число в некоторой среде с показателем преломления можно определить так:

Где - длина волны в вакууме, - волновое число в вакууме.

Иногда при описании монохроматического поля вместо фазы используют другие понятия. Введем в выражение для волнового возмущения волновое число вместо циклической частоты :

Тогда волновое возмущение запишется так:

(1.3.19)

Слово "эйконал" происходит от греческого слова (эйкон - образ). В русском языке этому соответствует слово "икона".

В отличие от фазы поля эйконал более удобная величина для оценки изменения фазы от луча к лучу, так как непосредственно связан с геометрической длиной хода луча.

Оптическая длина луча (optical path difference, OPD ) - это произведение показателя преломления на геометрическую длину пути .

Приращение эйконала равно оптической длине луча:

(1.3.20)

Если фаза изменяется на , то эйконал изменяется на : ;
если фаза изменяется на , то эйконал изменяется на : ;
если фаза изменяется на , то эйконал изменяется на : .

Эйконал имеет огромное значение в теории оптического изображения, так как понятие эйконала позволяет, во-первых, описать весь процесс образования изображения с позиций волновой теории света, а во-вторых, наиболее полно проанализировать искажения передачи изображения оптическими приборами. Теория эйконала, разработанная в XIX веке Петцвалем, Зейделем и Шварцшильдом, явилась важным фундаментальным достижением геометрической оптики, благодаря которому стало возможным создание оптических систем высокого качества. . При сложении полей их комплексные амплитуды складываются, а временной экспоненциальный множитель можно вынести за скобки и не учитывать:

1.3.4. Уравнение Гельмгольца

Если поле монохроматическое, то дифференцирование по времени, сводится к умножению скалярной амплитуды на мнимый множитель . Таким образом, если подставить в волновое уравнение (1.3.18) описание монохроматического поля (1.3.23), то после преобразований мы получим волновое уравнение для монохроматического поля, в которое будет входить только комплексная амплитуда (уравнение Гельмгольца).

Уравнение Гельмгольца (Helmgolz equation ):