Импульсное инфракрасное светодиодное излучение. Как выбрать инфракрасный обогреватель - принцип работы, устройство и важные критерии выбора Ик прибор

Одним из эффективных источников дополнительного обогрева являются . Принцип их работы основан на инфракрасных лучах, которые обеспечивают быстрое и качественное повышение температуры на любом участке вашей квартиры.

Сегодня все больше людей отдают предпочтение инфракрасным обогревателям. От привычных они отличаются тем, что нагревают не сам воздух в помещении, а твердые поверхности (полы, стены) и предметы, а те, в свою очередь разливают тепло в окружающее пространство. Так незаметно прогревается целое помещение.

Инфракрасные волны волны длинные, а значит, свободно поглощаются даже в сильно обдуваемой и холодной комнате. Сам обогрев происходит быстро, сразу после включения прибора. Такая скорость объясняется тем, что поток инфракрасных лучей будет направлен в определенную зону, именно там и будет происходить нагревание. То есть, находясь в одной части комнаты и задав направление конвектора в ту сторону, вы сразу почувствуете всем телом тепло, в то время как целое помещение пока не обогрето как следует. Это еще одно важное преимущество инфракрасного обогревателя перед остальными типами приборов того же назначения. Так, чтобы «раскочегариться», и конвекторам нужно не менее получаса.

Конструкция прибора

Чтобы понять, как работает этот электроприбор, и каков же основной принцип действия, нужно иметь представление о его составных частях. Корпус, как правило, изготовлен из стали, а на поверхность нанесена порошковая краска. Внутри него имеется отражатель из алюминия, к которому присоединен нагревательный элемент. Таким образом, инфракрасный обогреватель похож на греющую лампу или панель , внутри которой собирается пучок лучей инфракрасного излучения. Они действуют независимо от направления воздуха и скорости перемещения теплых и холодных воздушных масс.

Принцип работы инфракрасного обогревателя схож с действием солнца на атмосферу. Солнечные лучи также проникают на поверхность, которая, в свою очередь поглощает тепло.

Типы инфракрасных обогревателей

Приборы классифицируются по виду нагревательного элемента:

  • электрические;
  • водяные.

По уровню нагревания ИК обогреватели бывают:

  1. Длинноволновые — могут использоваться в домах, офисных кабинетах, производственных помещениях.
  2. Средневолновые . Желательно, чтобы высота потолка достигала трех метров и более.
  3. Коротковолновые — не рекомендуется применение их в домашних условиях, поскольку короткие волны имеют самое сильное излучение. Лучше всего, если подобный тип нагревательных приборов будет использоваться в просторном промышленном цеху, амбаре, зале с высокими потолками, на улице.

Какую модель лучше выбрать

Чтобы решить, какое именно устройство вам подходит, следует тщательно изучить его характеристики, возможности и систему управления. Все зависит от площади отапливаемого помещения, условий эксплуатациии целей, которые вы собираетесь достичь. Например, где именно будет размещаться прибор, придется ли его перетаскивать в другое помещение или установить стационарно?

Так, переносные обогреватели меньше по размерам, но в то же время способны отапливать гораздо меньшую площадь, чем их стационарные собратья.

Различают настенные, потолочные и плинтусные инфракрасники.

Самым удобным решением, в особенности для владельцев небольших квартир, станет потолочный вариант размещения обогревателя. Он не требует много площади, монтируется непосредственно в подвесной потолок либо присоединяется к обычному потолку с помощью кронштейнов.

Обогреватель можно установить и на полу. менее эффективны в сравнении с потолочными, ведь поток излучения будет направлен не прямо, и обогрев усложнится.

Лучше всего, если внутри такого устройства будет – он гораздо надежнее и безопаснее, чем, например, керамический.

Карбоновый нагревательный элемент представляют собой трубку, сделанную из кварца. Внутри нее – вакуумное пространство с углеродной спиралью. При работе обогревателя с карбоновой трубкой возникает характерное красноватое свечение, которое не очень приятно глазам. – менее качественный, зато не светится во время работы. А галогеновый может и вовсе оказать негативное влияние на организм человека из-за слишком коротких излучаемых волн.

Перед тем, как определиться с выбором прибора, спросите, насколько толстый анодирующий слой на пластине, генерирующей поток инфракрасных лучей. Этот параметр определяет долгосрочность службы прибора. При толщине не менее 25 микрон обогреватель считается надежным. Если слой тоньше, то, скорее всего, ваша покупка прослужит недолго – такие устройства выходят из строя через 2-3 года.

Обязательно узнайте тип нагревательного элемента. Избегайте галогеновых обогревателей, которые словно лампы, излучают золотистое свечение и могут отрицательно повлиять на здоровье.

Прикиньте, какое помещение вам потребуется отапливать с помощью данного агрегата. Обогреватели сильно отличаются друг от друга по мощности. На комнату площадью 10 квадратных метров хватит 1000 Вт, но лучше брать обогреватель с запасом. Ведь немало тепла поглощают стены, горизонтальные поверхности, окна, перекрытия.

Мобильные ИК-обогреватели порой имеют мощность 300-500 Вт. Они рассчитаны на то, что вы будете пользоваться ими в различных помещениях. Если вы периодически работаете в гараже, подвале, небольшом кабинете, который не отапливается в полной мере, то такой переносной вид обогревателя будет эффективным решением проблемы.

Инфракрасное излучение - это электромагнитное излучение, находящееся на границе с красным спектром видимого света. Человеческий глаз не способен видеть этот спектр, однако мы его ощущаем кожей, как тепло. При воздействии инфракрасных лучей, предметы нагреваются. Чем короче длина волны инфракрасного излучения, тем сильнее будет тепловой эффект.

Согласно международной организации стандартизации (ISO), инфракрасное излучение делится на три диапазона: ближний, средний и дальний. В медицине, в импульсной инфракрасной светодиодной терапии (LEDT), применяется только ближний инфракрасный диапазон, поскольку он не рассеивается на поверхности кожи и проникает на подкожные структуры.


Спектр ближнего инфракрасного излучения ограничен от 740 до 1400 нм, но с увеличением длины волны - снижается способность лучей проникать в ткани, за счет поглощения фотонов водой. В аппаратах “РИКТА” используются инфракрасные диоды с длиной волны в диапазоне 860-960 нм и средней мощностью 60 мВт (+/- 30).

Излучение инфракрасных лучей не такое глубокое, как лазерное, однако у него более широкий спектр воздействия. Было доказано, что фототерапия ускоряет заживление ран, уменьшает воспаление и снимает болевой синдром, воздействуя на подкожные ткани и способствуя пролиферации и адгезии клеток в тканях .

LEDT интенсивно способствует прогреванию ткани поверхностных структур, улучшает микроциркуляцию, стимулирует регенерацию клеток, способствует уменьшению воспалительного процесса и восстановлению эпителия .


ЭФФЕКТИВНОСТЬ ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ В ЛЕЧЕНИИ ЧЕЛОВЕКА

LEDT используется, как дополнение к низкоинтенсивной лазерной терапии аппаратов “РИКТА” и обладает лечебным и профилактическим эффектами.

Воздействие аппарата инфракрасного излучения способствует ускорению метаболических процессов в клетках, активирует регенеративные механизмы и улучшает кровоснабжение . У инфракрасного излучения комплексное действие, оно оказывает следующие эффекты на организм:

    увеличение диаметра сосудов и улучшение кровообращения;

    активация клеточного иммунитета;

    снятие отечности тканей и воспаления;

    купирование болевых синдромов;

    улучшение метаболизма;

    снятие эмоционального напряжения;

    восстановление водно-солевого баланса;

    нормализация гормонального фона.

Воздействуя на кожу, инфракрасные лучи раздражают рецепторы, передавая сигнал в мозг. Центральная нервная система рефлекторно отвечает, стимулируя общий метаболизм и повышая общий иммунитет.

Гормональный ответ способствует расширению просвета сосудов микроциркуляторного роста, улучшая кровоток. Это приводит к нормализации артериального давления, лучшему транспорту кислорода в органы и ткани .

БЕЗОПАСНОСТЬ

Несмотря на пользу, оказываемую импульсной инфракрасной светодиодной терапией, воздействие инфракрасным излучением должно быть дозированным. Бесконтрольное облучение может привести к ожогам, покраснениям кожи, перегреву тканей.

Количество и длительность процедур, частоту и область инфракрасного излучения, а также другие особенности лечения должен назначать специалист.

ПРИМЕНЕНИЕ ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ

LEDT-терапия показала высокую эффективность при лечении разных заболеваний: пневмонии, гриппа, ангины, бронхиальной астмы, васкулита, пролежней, варикозного расширения вен, заболеваний сердца, обморожений и ожогов, некоторых форм дерматитов, заболеваний периферической нервной системы и злокачественных новообразований кожи .

Инфракрасное излучение, наряду с электромагнитным и лазерным, оказывает общеукрепляющее действие и помогает при лечении и профилактики многих заболеваний. Аппарат “РИКТА” сочетает в себе излучение многокомпонентного типа и позволяет добиться максимального эффекта в короткий срок. Купить прибор инфракрасного излучения можно в .

Свет является одним из главных условий для осуществления жизнедеятельности земных организмов. Множество биологических процессов может протекать только под действием инфракрасного излучения.

Свет как фактор лечения использовался еще древними врачами Греции и Египта. В XX веке светотерапия стала развиваться как часть официальной медицины. Однако следует учесть, что инфракрасное излучение - не панацея.

Что такое инфракрасное излучение

Раздел физиотерапии, изучающий влияние световых волн на организм, был назван фототерапией. Доказано, что волны различного диапазона воздействуют на организм в разных слоях и уровнях, причем инфракрасное излучение обладает наибольшей глубиной проникновения, а самым поверхностным действием обладает ультрафиолетовый свет.
Инфракрасное излучение имеет длину волны от 780 до 10000 нм (1 мм). В физиотерапии, как правило, используются волны в пределах от 780 до 1400 нм, т. е. короткие, проникающие в ткани на глубину около 3 сантиметров.

Лечебные эффекты

Под действием инфракрасного излучения происходит образование тепла в тканях, ускорение физико-химических реакций, стимулируются процессы репарации и регенерации тканей, расширяется сосудистая сеть, ускоряется кровоток, усиливается рост клеток, вырабатываются биологически активные вещества, лейкоциты направляются к очагу поражения и т. д.
Улучшение кровоснабжения и расширение просвета сосудов приводит к снижению артериального давления, психоэмоционального и физического напряжения, мышечной релаксации, поднятию настроения, улучшению сна и состоянию комфорта.
Помимо перечисленного, инфракрасное излучение обладает противовоспалительным действием, стимулирует иммунитет и помогает организму бороться с инфекционными агентами.
Таким образом, инфракрасная терапия обладает следующими свойствами:

  • противовоспалительным;
  • спазмолитическим;
  • трофическим;
  • стимулирующим кровоток;
  • пробуждающим резервные функции организма;
  • дезинтоксикационным;
  • выраженным биостимулирующим действием.

Говоря о светолечении, нельзя не вспомнить основоположника этого раздела физиотерапии, датского врача и ученого Нильса Рюберга Финзена, получившего Нобелевскую премию за успешное применение концентрированного светового излучения в лечении различных заболеваний. С помощью его трудов появилась вероятность расширить возможности светотерапии.

Методики

Инфракрасная терапия бывает двух видов: местная и общая.
При местном воздействии излучению подвергается конкретная часть тела пациента, а при общей – весь его организм.
Процедуры проводятся 1 или 2 раза в день, длительность одного сеанса от 15 до 30 минут. Курсовое лечение состоит из 5-20 процедур.
Необходимо знать, что во время воздействия на область лица глаза должны быть защищены специальными очками, картонными накладками, ватой и другими способами.
После сеанса на кожном покрове остается эритема (покраснение) с нечеткими контурами, которые бесследно исчезают через час после окончания процедуры.


Показания

Основными показаниями к терапии ИК лучами являются:

  • дегенеративно-дистрофические заболевания опорно-двигательного аппарата;
  • последствия травм, патологии суставов, контрактуры, инфильтраты;
  • хронические и подострые воспалительные процессы, вялозаживающие раны;
  • невриты, невралгии, миалгии;
  • дерматиты, дерматозы, нейродермиты, последствия обморожений и ожогов, рубцы, трофические язвы;
  • некоторые заболевания ЛОР-органов;
  • патологии глаз.

Противопоказания

При наличии следующих заболеваний и состояний от лечения инфракрасным излучением следует отказаться:

  • гнойные процессы без оттока содержимого;
  • обострение хронических заболеваний;
  • наличие новообразований;
  • активная форма туберкулеза;
  • склонность к кровотечениям;
  • заболевания крови;
  • беременность;
  • индивидуальная непереносимость метода.

Приборы

На сегодняшний день существует возможность принимать процедуры светолечения как в лечебно-профилактических учреждениях, так и в домашних условиях. Для этой цели существует большой выбор стационарных и портативных аппаратов.
Для лечения в домашних условиях используются портативные аппараты, не требующие особых условий использования.

Несмотря на это, перед началом самолечения необходимо проконсультироваться с физиотерапевтом по поводу определения возможных рисков для назначения рассматриваемого метода лечения, а также выбора определенной методики для каждого конкретного случая.
Доктор распишет лечебную методику, где будет прописано, на какую область необходимо воздействовать, какой зазор между аппаратом и кожным покровом нужно соблюдать, интенсивность воздействия, время проведения сеанса лечения и количество процедур на курс физиотерапии.

Сочетание лечебных факторов

Инфракрасную терапию в один день можно дополнять следующими видами физиотерапии:

  • электротерапия (четырехкамерная гальваническая ванна, амплипульстерапия, диадинамотерапия, электросон, франклинизация, дарсонвализация и ультратонотерапия);
  • магнитотерапия;
  • ультразвуковая терапия;
  • лазерная терапия;

Сочетание физических факторов усиливает лечебное воздействие и ответ организма на процедуру, уменьшает сроки терапии и ускоряет выздоровление пациента.
Не следует сочетать в один день:

  • инфракрасную терапию и ультрафиолетовое облучение;
  • гальванизацию и электрофорез.

В один день с инфракрасной терапией не проводятся :

  • индуктотерапия;
  • УВЧ-терапия;
  • дециметровая и сантиметровая терапия;
  • лечебные души;
  • парафинолечение;
  • грязелечение;
  • лечебные ванны, в том числе подводный массаж и вытяжение позвоночника.

Данные методики обладают выраженным раздражающим действием на организм и могут нанести вред здоровью пациента.

Большой круг заболеваний лечится при помощи инфракрасного излучения. Методика проведения процедур зачастую настолько простая, что терапевтические мероприятия осуществимы в домашних условиях. Консультация врача по поводу противопоказаний и сочетания лечебных факторов поможет достичь хороших результатов.

Видеоролик на тему «Инфракрасная терапия»

ИК поддиапазоны:

  • Ближний ИК (англ. near IR, сокращённо NIR): 0.78 - 1 мкм;
  • Коротковолновый ИК (англ. short wavelength IR, сокращённо SWIR): 1 - 3 мкм;
  • Средневолновый ИК (англ. medium wavelength IR, сокращённо MWIR): 3 - 6 мкм;
  • Длинноволновый ИК (англ. long wavelength IR, сокращённо LWIR): 6 - 15 мкм;
  • Сверхдлиннволновый ИК (англ. very long wavelength IR, сокращённо VLWIR): 15 - 1000 мкм.

Инфракрасный спектральный диапазон 0,78 - 3 мкм применяется в ВОЛС (сокр. от волоконно-оптическая линия связи), приборах внешнего наблюдения за объектами и аппаратуре для проведения химического анализа. В свою очередь все длины волн начиная с 2 мкм и заканчивая 5 мкм используются в пирометрах, и газовых анализаторах, контролирующих уровень загрязнения в конкретной среде. Интервал 3 - 5 мкм более подходит для систем, регистрирующих изображения объектов, с высокой собственной температурой или же в применениях где требование к контрасту предъявляются выше чем к чувствительности. Очень популярный для спецприменений спектральный диапазон 8 - 15 мкм в основном используется там, где необходимо увидеть и распознать любые объекты, находящиеся в тумане.

Все ИК-приборы разрабатываются в соответствии с графиком пропускания ИК излучения, который приведён ниже.

Существует два типа ИК детекторов:

    • Фотонные . Чувствительные элементы состоят из полупроводников различных типов, а так же могут включать в свою структуру различные металлы, принцип их работы основан на поглощении фотонов носителями заряда, в результате чего изменяются электрические параметры чувствительной области, а именно: изменение сопротивления, возникновение разности потенциалов, фототока и др. Данные изменения могут быть зарегистрированы измеряющими схемами, сформированными на подложке, где расположен сам сенсор. Сенсоры обладают высокой чувствительностью и высокой скоростью отклика.
  • Тепловые . ИК излучение поглощается чувствительной областью сенсора, нагревая её до некоторой температуры, что приводит к изменению физических параметров. Данные отклонения которые могут быть зарегистрированы измеряющими схемами, выполненными непосредственно на одной подложке с фоточувствительной областью. Описанные выше типы датчиков имеют высокую инерционность, значительное время отклика и относительно низкую чувствительность, в сравнении с фотонными детекторами.

По типу используемого полупроводника датчики разделяются на:

  • Собственный (нелегированный полупроводник с равной концентрацией дырок и элеткронов).
  • Примесный (легированный полупроводник n- или p-типа).

Основным материалом всех фоточувствительных сенсоров является кремний или германий, которые могут быть легированы различными примесями бора, мышьяка, галлия и др. Примесный фоточувствительный датчик схож с собственным детектором, с той лишь разницей что носители с донорных и акцепторных уровней могут перемещаться в зону проводимости преодолевая более низкий энергетический барьер, вследствие чего данный детектор может работать с более короткими длинами волн, чем собственный.

Типы конструкций детекторов:

Под воздействием ИК излучения в электронно-дырочном переходе возникает фотовольтаический эффект: фотоны с энергией, превышающей ширину запрещённой зоны, поглощаются электронами, в результате чего они занимают места в зоне проводимости, способствуя тем самым возникновению фототока. Детектор может быть выполнен на основе как примесного так и собственного полупроводника.

Фоторезистивный . Чувствительным элементом сенсора является полупроводник, принцип работы данного датчика основан на эффекте изменения сопротивления проводящего материала под воздействием ИК излучения. Свободные носители заряда, генерируемые фотонами в чувствительной области, приводят к уменьшению её сопротивления. Сенсор может быть выполнен на основе как примесного так и собственного полупроводника.

Фотоэмиссионный , он же «детектор на свободных носителях» или на барьере Шоттки.; Чтобы избавиться от необходимости глубокого охлаждения примесных полупроводников, и в некоторых случаях достичь чувствительности в более длинноволновом диапазоне, существует третий тип детекторов, называемых фотоэмиссионными. В датчиках данного типа металлическая или металло-кремниевая структура покрывает примесный кремний. Свободный электрон, который образуется в результате взаимодействия с фотоном, попадает из проводника в кремний. Преимуществом такого детектора является отсутствие зависимости отклика от характеристик полупроводника.

Фотодетектор на квантовой яме . Принцип действия схож с примесными детекторами, в которых примеси используются для изменения структуры запрещённой зоны. Но в данном типе детектора примеси сконцентрированы в микроскопических областях где ширина запрещенной зоны значительно сужена. Образованная таким образом «яма» называется квантовой. Регистрация фотонов происходит, за счет поглощения и образования зарядов в квантовой яме, которые затем вытягиваются полем в другую область. Такой детектор намного чувствительнее по сравнению с другими типами, так как целая квантовая яма - это не отдельный атом примеси, а от десяти до ста атомов на единице площади. Благодаря этому можно говорить о достаточно высокой эффективной площади поглощения.

Термопары . Основным элементом данного устройства является контактная пара двух металлов с различной работой выхода, в результате чего на границе возникает разность потенциалов. Это напряжение пропорционально температуре контакта.

Пироэлектрические детекторы изготовлены с использованием пироэлектрических материалов и принцип работы которых основан на возникновении заряда в пироэлектрике при прохождении через него теплового потока.

Микробалочные детекторы . Состоит из микробалки и проводящего основания, которые выполняют роль обкладок конденсатора, микробалка сформирована из двух плотно соединённых металлических частей, имеющих разные коэффициенты теплового расширения. При нагреве балка изгибается и изменяет ёмкость структуры.

Болометры (Терморезисторы) состоят из терморезистивного материала, в основе принципа работы данного сенсора поглощение ИК излучения материалом чувствительного элемента, что приводит к увеличению его температуры, что в свою очередь вызывает изменение электрического сопротивления. Есть два пути снятия информации: измерение тока, протекающего в чувствительной области, при постоянном напряжении и измерение напряжения при постоянном токе.

Основные параметры

Чувствительность - отношение изменения электрической величины на выходе приёмника излучения, вызванного падающим на него излучением, к количественной характеристике этого излучения. В/лк-с.

Интегральная чувствительность - чувствительность к немонохроматическому излучению заданного спектрального состава. Измеряется в А/лм.

Спектральная чувствительность - зависимость чувствительности от длины волны излучения.

Обнаружительная способность - величина обратная величние минимального потока излучения, который вызывает на выходе сигнал, равный собственному шуму. Она обратно пропорциональна квадратному корню из площади примёмника излучения. Измеряется в 1/Вт.

Удельная обнаружительная способность - Обнаружительная способность умноженная на корень квадратный из произведения полосы частот в 1 Гц и площадь в 1 см 2 . Измеряется в см*Гц 1/2 /Вт.

Время отклика - время, необходимое для установления сигнала на выходе, соответствующего входному воздействию. Измеряется в миллисекундах.

Рабочая температура - максимальная температура сенсора и окружающей среды, при которой сенсор имеет возможность правильно выполнять свои функции. Измеряется в °C.


Применение:

  • Космические системы наблюдения;
  • Система обнаружения стартов МБР;
  • В бесконтактных термометрах;
  • В датчиках движения;
  • В ИК спектрометрах;
  • В приборах ночного видения;
  • В головках самонаведения.

Инфракрасные волны не видимы человеческому глазу. Однако, по сути, они представляют собой такие же электромагнитные волны, как и видимый свет, и распространяются в пространстве по тем же законам. Поэтому такое излучение можно испускать специальным осветителем, а затем улавливать оптическим устройством, в котором преобразователь превратит невидимые инфракрасные волны в видимый свет.

Для преобразования инфракрасного излучения в видимый свет применяют оптико-электронный преобразователь. Он преобразует инфракрасный свет в поток электронов, а электроны, бомбардируя специальный экран, вызывают его свечение в видимом диапазоне. Свет, исходящий из ОЭПа, направляется непосредственно в глаз наблюдателя, фиксируется фотоаппаратом или видеокамерой.

На что обратить внимание при подборе техники для наблюдения в ИК диапазоне?

Качество изображения (яркость, контрастность, резкость, дальность обнаружения цели на фоне пейзажа) зависит как от качества осветителя, так и от ПНВ (поколение ЭОПа, качество оптики). Кроме четкости изображения важными факторами при выборе прибора для наблюдения в ИК-диапазоне являются:

  • Вес и габариты устройства;
  • Надежность в работе, долговечность;
  • Энергопотребление устройства, тип источника питания;
  • Защищенность прибора от попадания внутрь влаги или грязи, стойкость к ударам и отдаче;
  • Цена.

Осуществлять выбор стоит с оглядкой на конкретные задачи и бюджет покупки. Конечно, для наблюдения на охоте стоит искать более компактный и легкий прибор, рассчитанный на нагрузку при отдаче оружия. А для обеспечения охраны территории можно выбрать более крупногабаритные конструкции, обладающие возможностью непрерывной работы в течение длительного времени.

, представленной на российском рынке

  • . Прибор наблюдения, визуализирующий излучение инфракрасной части спектра. Устройство рассчитано на работу с использованием в качестве излучателя инфракрасного лазера (твердотельный или светодиодный) с длиной волны около 350…2000 нанометров. Использованный в конструкции фотокатод S-1+ позволяет видеть четкое изображение при наблюдении цели на любой дистанции в пределах возможностей прибора.

Прибор удобен в работе. Компактные размеры и малая масса позволяют вести наблюдение без усталости в течение долгого времени. Прибор имеет удобную ручку. Также его можно закрепить на шлем-маску, освободив руки для работы. Прибор выдерживает температуры от -10ºC до +40ºC. Питание - «мизинчиковая» 1,5-вольтовая батарейка.

  • . Прибор способен переводить в видимый свет излучение инфракрасной части спектра с длиной волны от 320 до 1700 нанометров. Поскольку его вес всего 250 г, его можно использовать для длительного наблюдения, при этом руки практически не устают. Комфорту наблюдения способствует эргономическая рукоять. Для более удобного наблюдения прибор можно закрепить на шлем-маске и освободить руки.

Для этой модели разработана и более серьезная модификация. Она имеет больший диапазон чувствительности к инфракрасному излучению. Верхняя граница диапазона - 2000 нанометров.

  • . Камера способна регистрировать инфракрасное излучение, которое имеет длину волны от 400 до 1700 нм. Ее можно использовать как непосредственно для наблюдения, так и присоединять к микроскопу и для инфракрасной микроскопии, спектрографии, в криминалистических исследованиях и других исследовательских работах.

Кремниевый ПЗС-датчик камеры имеет высокую чувствительность. Также в нем реализован принцип электронного усиления излучения. Питание камеры - 4 аккумуляторных батарейки АА. При этом есть также встроенное зарядное устройство. Сетевой адаптер позволяет брать 12В от бытовой электросети, поэтому с камерой можно работать долго и в удобной обстановке. К изделию прилагается тренога и сумка для переноски.

  • переводит в видимое излучение инфракрасные волны с длинной волны 350 - 1700 нм. В этой конструкции ЭОП с удлиненной чувствительностью совмещен с SSD-камерой. Благодаря 4-x дюймовому LCD-дисплею можно оперативно вести наблюдение, а видеовыход позволит записать информацию на внешний носитель. Камера будет незаменима в инфракрасной микроскопии, криминалистических исследованиях. Питание осуществляется от 4-х аккумуляторов формата АА. Время непрерывной работы камеры на одном комплекте аккумуляторов - около 1,5 часа.
  • Шлем-маска FM-1 . Этот удобный аксессуар помогает освободить руки при работах с приборами наблюдения в инфракрасном диапазоне SM-3R и Abris-M. Механизм маски имеет два фиксированных положения. При этом предусмотрена возможность прикрепить прибор с правой или левой стороны, в зависимости от предпочтений наблюдателя. Положение закрепленного прибора также регулируется по трем направлениям.

Как видите, сегодня на прилавках магазинов представлено немало устройств, позволяющих вести наблюдение и фиксировать информацию в ближнем инфракрасном диапазоне. В этом многообразии любой, даже самый требовательный покупатель найдет вариант, который устроит его по возможностям и стоимости.