Одноканальная смо с ожиданием. Математические модели простейших систем массового обслуживания

Классификация СМО и их основные характеристики

Системы массового обслуживания делятся на типы (или классы) по ряду признаков. Первое деление: СМО с отказами и СМО с очередью . В СМО с отказами заявка, поступившая в момент, когда все каналы заняты, получает отказ, покидает СМО и в дальнейшем процессе обслуживания не участвует. Примеры СМО с отказами встречаются в телефонии: заявка на разговор, пришедшая в момент, когда все каналы связи заняты, получает отказ и покидает СМО необслуженной. В СМО с очередью заявка, пришедшая в момент, когда все каналы заняты, не уходит, а становится в очередь и ожидает возможности быть обслуженной. На практике чаще встречаются (и имеют большее значение) СМО с очередью; недаром теория массового обслуживания имеет второе название: «теория очередей».

СМО с очередью подразделяются на разные виды, в зависимости от того, как организована очередь-ограничена она или не ограничена. Ограничения могут касаться как длины очереди, так и времени ожидания (так называемые «СМО с нетерпеливыми заявками»). При анализе СМО должна учитываться также и «дисциплина обслуживания» - заявки могут обслуживаться либо в порядке поступления (раньше пришла, раньше обслуживается), либо в случайном порядке. Нередко встречается так называемое обслуживание с приоритетом - некоторые заявки обслуживаются вне очереди. Приоритет может быть как абсолютным - когда заявка с более высоким приоритетом «вытесняет» из-под обслуживания заявку с низшим (например, пришедший в парикмахерскую клиент высокого ранга прогоняет с кресла обыкновенного клиента), так и относительным - когда начатое обслуживание доводится до конца, а заявка с более высоким приоритетом имеет лишь право на лучшее место в очереди.

Существуют СМО с так называемым многофазовым обслуживанием, состоящим из нескольких последовательных этапов или «фаз» (например, покупатель, пришедший в магазин, должен сначала выбрать товар, затем оплатить его в кассе, затем получить на контроле).

Кроме этих признаков, СМО делятся на два класса: «открытые» и «замкнутые». В открытой СМО характеристики потока заявок не зависят от того, в каком состоянии сама СМО (сколько каналов занято). В замкнутой СМО - зависят. Например, если один рабочий обслуживает группу станков, время от времени требующих наладки, то интенсивность потока «требований» со стороны станков зависит от того, сколько их уже неисправно и ждет наладки. Это - пример замкнутой СMO.

В зависимости от типа СМО при оценке её эффективности могут применяться те или иные величины (показатели эффективности). Например, для СМО с отказами одной из важнейших характеристик её продуктивности является так называемая абсолютная пропускная способность – среднее число заявок, которое может обслужить система за единицу времени. Наряду с абсолютной, часто рассматривается относительная пропускная способность – средняя доля поступивших заявок, обслуживаемая системой (отношение среднего числа обслуживаемых в единицу времени заявок к среднему числу поступающих заявок за это время). Помимо этого при анализе СМО с отказами могут интересовать ещё среднее число занятых каналов, среднее относительное время простоя системы в целом и отдельного канала и т.д.


Характеристики СМО с ожиданиями. Для СМО с неограниченным ожиданием абсолютные и относительные пропускные способности теряют смысл. Зато важными являются: среднее число заявок в очереди, среднее число заявок в системе (в очереди и под обслуживанием), среднее время ожидания заявки в очереди, среднее время пребывания заявки в системе и другие. Для СМО с ограниченным ожиданием интерес представляют обе группы характеристик.

Для анализа процесса, протекающего в СМО, существенно знать основные параметры системы: число каналов n , интенсивность потока заявок l, производительность каждого канала (среднее число заявок , обслуживаемых непрерывно занятым каналом в единицу времени), условия образования очереди (ограничения, если они есть).

Условимся все потоки событий, переводящие СМО из состояния в состояние, считать пуассоновскими.

Простейшая задача. Пусть СМО состоит только из одного канала (n=1 ) и на нее поступает пуассоновский поток заявок с интенсивностью l, зависящей в общем случае от времени l=l(t) (9.1). Заявка, заставшая канал занятым, получает отказ и покидает систему. Обслуживание заявки продолжается в течение случайного времени Т об, распределенного по показательному закону с параметром m f(t)= me - m t (t>0) (9.2).

Из этого следует, что «поток обслуживаний» - простейший, с интенсивностью m. Требуется найти: абсолютную (А) и относительную (q ) пропускные способности.

Рассмотрим единственный канал обслуживания как физическую систему S, которая может находиться в одном из двух состояний: S 0 – свободен, S 1 – занят. Обозначим вероятности состояний p 0 (t) и p 1 (t) . Очевидно:

"t p 0 (t)+p 1 (t)=1 (9.3).

Граф состояний системы


По графу состояний системы составим дифференциальные уравнения Колмогорова:

(9.4)

В соответствии с (9.3) одно уравнение в (9.4) лишнее. Отбросим второе уравнение, а первое перепишем с учетом (9.3):

или (9.5).

Это уравнение естественно решать при начальных условиях p 0 (0)=1; p 1 (0)=0. Уравнение (9.5) легко может быть решено не только для простейшего потока заявок (l=const), но и для случая l=l(t). Приведем решение (9.5) только для случая l=const: .


Для нашего случая вероятность p 0 есть не что иное, как q .

Действительно, p 0 есть вероятность того, что в момент t канал свободен, иначе вероятность того, что заявка, пришедшая в момент t , будет обслужена. А значит, для данного момента времени t среднее число обслуженных заявок к числу поступивших также равно p 0: q= p 0 .

В пределе, при t®¥, когда процесс обслуживания уже установится, предельное значение q будет равно .

Легко найти и А, зная q . Они связаны очевидным соотношением:. В пределе, при t®¥, А тоже установится и будет равна .

Зная q (вероятность того, что пришедшая в момент t заявка будет обслужена) легко найти вероятность отказа: P отк =1-q. P отк есть не что иное, как средняя доля необслуженных заявок среди поданных. В пределе, при t®¥ .

Рассмотрим СМО с одним каналом обслуживания, в которую поступает поток требований с интенсивностью λ . Интенсивность обслуживания одного требования равна μ . Требуется найти предельные вероятности состояний системы и показатели ее эффективности. Система S в данном случае имеет 2 состояния: S 0 - канал свободен и S 1 канал занят. Нарисуем граф состояний системы, т.е. геометрическую схему, на которой состояние системы изображаются прямоугольниками, а переходы из состояния в состояние - стрелками:

S 0 μ S 1

Для составление уравнения предельных состояний применяется правило: слева в уравнениях стоит предельная вероятность данного состояния р i , умноженная на суммарную интенсивность всех потоков, ведущих из данного состояния, а справа - сумма произведений интенсивностей всех потоков, входящих в состояние I, на вероятности тех состояний, из которых эти потоки выходят.


Для данного графа система уравнений для вероятностей состояний имеет вид:

l ρ 0 =μ ρ 1

m ρ 1 =λ ρ 0

т.е. имеет одинаковые уравнения. Учитывая, что р 1 +р 0 =1, получаем систему:

l ρ 0 =μ ρ 1

ρ 1 =ρ 0 =1 (6.6)

Обозначим:

a =λ /μ (6.7)

Величина a называется интенсивностью загрузки канала. Она выражает среднее число требований, приходящее за среднее время обслуживания, одного требования. Тогда из системы (6.6), с учетом формулы (6.7), получим выражения для предельных вероятностей состояний:

р 0 - вероятность того, что канал обслуживания свободен, т.е. характеризует относительную пропускную способность СМО.

р 1 - вероятность того, что канал занят, т.е. вероятность отказа.

Абсолютная пропускная способность:

A = λ × p 0 (6.9)

Среднее число занятых обслуживанием каналов:

N = a × (1– P отк ) (6.10)

Пример: Стол заказов магазина принимает заказы по одному телефону. Заявки поступают с интенсивностью 80 заявок в час, а среднее время оформления одной заявки 3 минуты. Определить показатели эффективности работы стола заказов.

Решение: λ =80заявок/час, t =3мин.

Вычислим интенсивность загрузки канала a . При этом следует обратить внгимание, что при вычислении a , λ и t должны иметь одинаковую временную размерность. Поэтому в нашем примере нужно преобразовать одну из данных величин, например, t .

t =2мин=3/60часа=1/20часа.

Тогда

1. Доля времени простоя канала:

Следовательно, 20% времени канал будет свободен, значит в среднем только 20% заявок может быть обслужено.

2. Доля заявок, получивших отказ в обслуживании, равна:

т.е. 80% времени телефон будет занят обслуживанием.

3. Абсолютная пропускная способность системы:

Из вычислений видно, что СМО с одним телефоном будет плохо справляться с потоком заявок, т.к. потери поступающих заявок составляют 80%, а вероятность обслуживания всего 20%. Кроме того, низка абсолютная пропускная способность системы – только 16 завявок из 80 поступивших.

Система Эрланга
В качестве показателей эффективности СМО с отказами будем рассматривать:
А - абсолютную пропускную способность СМО, т.е. среднее число заявок, обслуживаемых в единицу времени;
Q - относительную пропускную способность, т.е. среднюю долю пришедших заявок, обслуживаемых системой;
P отк. - вероятность отказа, т.е. того, что заявка покинет СМО необслуженной;
- среднее число занятых каналов (для многоканальной системы).
Одноканальная система с отказами . Рассмотрим задачу.
Имеется один канал, на который поступает поток заявок с интенсивностью λ. Поток обслуживаний имеет интенсивность μ 1 . Найти предельные вероятности состояний системы и показатели ее эффективности.
Система S (СМО) имеет два состояния: S 0 - канал свободен, S 1 - канал занят. Размеченный граф состояний представлен на рис. 6.

Рис. 6
В предельном, стационарном режиме система алгебраических уравнений для вероятностей состояний имеет вид.
(18)
т.е. система вырождается в одно уравнение. Учитывая нормировочное условие p 0 +p 1 =1, найдем из (18) предельные вероятности состояний
(19)
которые выражают среднее относительное время пребывания системы в состоянии S 0 (когда канал свободен) и S 1 (когда канал занят), т.е. определяют соответственно относительную пропускную способность Q системы и вероятность отказа P отк:
(20)
(21)
Абсолютную пропускную способность найдем, умножив относительную пропускную способность Q на интенсивность потока отказов
(22)
Задача 5. Известно, что заявки на телефонные переговоры в телевизионном ателье поступают с интенсивностью λ, равной 90 заявок в час, а средняя продолжительность разговора по телефону об. =2 мин. Определить показатели эффективности работы СМО (телефонной связи) при наличии одного телефонного номера.
Решение. Имеем λ=90 (1/ч), об. =2 мин. Интенсивность потока обслуживании μ=1/ об =1/2=0,5 (1/мин)=30 (1/ч). По (20) относительная пропускная способность СМО (Q=30/(90+30)=0,25, т.е. в среднем только 25% поступающих заявок осуществят переговоры по телефону. Соответственно вероятность отказа в обслуживании составит Р отк. =0,75 (см. (21)). Абсолютная пропускная способность СМО по (29) ,A=90∙0,25=22,5, т.е. в среднем в час будут обслужены 22,5 заявки на переговоры. Очевидно, что при наличии только одного телефонного номера СМО будет плохо справляться с потоком заявок.
Многоканальная система с отказами . Рассмотрим классическую задачу Эрланга.
Имеется n каналов, на которые поступает поток заявок с интенсивностью λ. Поток обслуживаний имеет интенсивность μ. Найти предельные вероятности состояний системы и показатели ее эффективности.
Система S (СМО) имеет следующие состояния (нумеруем их по числу заявок, находящихся в системе): S 0 , S 1 , S 2 , …, S k , …, S n , где S k - состояние системы, когда в ней находится k заявок, т.е. занято k каналов.
Граф состояний СМОсоответствует процессу гибели и размножения и показан на рис. 7.

Рис. 7
Поток заявок последовательно переводит систему из любого левого состояния в соседнее правое с одной и той же интенсивностью λ. Интенсивность же потока обслуживаний, переводящих систему из любого правого состояния в соседнее левое состояние, постоянно меняется в зависимости от состояния. Действительно, если СМО находится в состоянии S 2 (два канала заняты), то она может перейти в состояние. S 1 (один канал занят), когда закончит обслуживание либо первый, либо второй канал, т.е. суммарная интенсивность их потоков обслуживании будет 2μ. Аналогично суммарный поток обслуживаний, переводящий СМО из состояния S 3 (три канала заняты) в S 2 . будет иметь интенсивность Зμ, т.е. может освободиться любой из трех каналов и т.д.
В формуле (16) для схемы гибели и размножения получим для предельной вероятности состояния
(23)
где членыразложения будут представлять собой коэффициенты приp 0 в выражениях для предельных вероятностей p 1 , p 2 , …, p k , …, p n . Величина
(24)
называется приведенной интенсивностью потока заявок или интенсивностью нагрузки канала. Она выражает среднее число заявок, приходящее за среднее время обслуживания одной заявки. Теперь
(25) есть не что иное, как интенсивность потока обслуженных системой заявок (в единицу времени). Так как каждый занятый канал обслуживает в среднем μ заявок (в единицу времени), то среднее число занятых каналов
(30)
или, учитывая (29), (24):
(31)

Пусть система имеет один канал обслуживания, на который поступает простейший поток заявок с интенсивностью l. Поток обслуживаний имеет интенсивность m. Заявка, заставшая систему занятой, сразу же покидает её.

Требуется найти абсолютную и относительную пропускную способность СМО и вероятность того, что заявка, пришедшая в момент времени t , получит отказ.

Система при любом t > 0 может находиться в двух состояниях: S 0 – канал свободен; S 1 – канал занят. Переход из S 0 в S 1 связан с появлением заявки и немедленным началом её обслуживания. Переход из состояния S 1 в S 0 осуществляется, как только очередное обслуживание завершится (рис. 4.5).

Рис. 4.5. Граф состояний одноканальной СМО с отказами

(среднее число заявок, обслуживаемых в единицу времени)

Шт/ед. времени,

где l – интенсивность потока заявок (величина, обратная среднему промежутку времени между поступающими заявками ); m – интенсивность потока обслуживаний (величина, обратная среднему времени обслуживания ).

(средняя доля заявок, обслуживаемых системой)

Вероятность отказа (вероятность того, что заявка покинет СМО необслуженной)

Очевидны следующие соотношения: Q = 1 – P отк и P отк = 1 – Q .

Пример. Технологическая система состоит из одного станка. На станок поступают заявки на изготовление деталей в среднем через 0,5 часа ( = 0,5 ч.). Среднее время изготовления одной детали равно = 0,6 ч. Если при поступлении заявки на изготовление детали станок занят, то она (деталь) направляется на другой станок. Найти абсолютную и относительную пропускную способности системы и вероятность отказа по изготовлению детали.

ч –1 ; ч –1 ;

дет/ч; .

Т. е. в среднем примерно 46 % деталей обрабатываются на этом станке.

.

Т. е. в среднем примерно 54 % деталей направляются на обработку на другие станки.

4.4.2. N-канальная СМО с отказами (задача Эрланга)

Это одна из первых задач теории массового обслуживания. Она возникла из практических нужд телефонии и была решена в начале 20 века датским математиком Эрлангом.

Пусть в системе имеется n каналов, на которые поступает поток заявок с интенсивностью l. Поток обслуживаний имеет интенсивность m. Заявка, заставшая систему занятой, сразу же покидает ее.

Требуется найти абсолютную и относительную пропускную способность СМО; вероятность того, что заявка, пришедшая в момент времени t , получит отказ; среднее число заявок, обслуживаемых одновременно (среднее число занятых каналов).



Состояние системы S (СМО) нумеруется по максимальному числу заявок, находящихся в системе (оно совпадает с числом занятых каналов):

- S 0 – в СМО нет ни одной заявки;

- S 1 – в СМО находится одна заявка (один канал занят, остальные свободны);

- S 2 – в СМО находится две заявки (два канала заняты, остальные свободны);

- S n – в СМО находится n заявок (все n каналов заняты).

Граф состояний СМО представлен на рис. 4.6.

Из состояния S 0 в состояние S 1 систему переводит поток заявок с интенсивностью l (как только приходит заявка, система переходит из S 0 в S 1). Если система находилась в состоянии S 1 и пришла еще одна заявка, то она переходит в состояние S 2 и т. д.

Рис. 4.6. Граф состояний N-канальной СМО с отказами

Пусть система находится в состоянии S 1 (работает один канал). Он производит m обслуживаний в единицу времени. Поэтому дуга перехода из состояния S 1 в состояние S 0 нагружена интенсивностью m. Пусть теперь система находится в состоянии S 2 (работают два канала). Чтобы ей перейти в S 1 , нужно, чтобы закончил обслуживание первый канал, либо второй. Суммарная интенсивность их потоков равна 2m и т. д.

Выходные характеристики (характеристики эффективности) данной СМО определяются следующим образом.

Абсолютная пропускная способность

, шт/ед. времени,

где n – количество каналов СМО; р 0 – вероятность нахождения СМО в начальном состоянии, когда все каналы свободны (финальная вероятность нахождения СМО в состоянии S 0).

Для того, чтобы написать формулу для определения р 0 , рассмотрим рис. 4.7. Граф, представленный на рисунке, называют еще графом состояний для схемы «гибели и размножения».

Рис. 4.7. Граф состояний для схемы «гибели и размножения»

S 1 , когда один канал занят

Вероятность того, что СМО находится в состоянии S 2 , т.е. когда два канала заняты



.

Вероятность того, что СМО находится в состоянии S n , т.е. когда все каналы заняты

.

Вероятность нахождения СМО в начальном состоянии р 0

Применительно к n -канальной СМО с отказами

.

При этом ; ; .

Относительная пропускная способность

.

Абсолютная пропускная способность А = lQ .

Вероятность отказа

.

Среднее число занятых каналов (среднее число заявок, обслуживаемых одновременно)

.

При этом .

Пример № 1. Имеется технологическая система (участок), состоящая из трех одинаковых станков. В систему поступают для обработки детали в среднем через 0,5 часа (). Среднее время изготовления одной детали = 0,6 ч. Если при поступлении заявки на изготовление детали все станки заняты, то деталь направляется на другой участок таких же станков. Необходимо найти финальные вероятности состояний системы и характеристики (показатели эффективности) данной СМО.

Интенсивность потока заявок

,

т. е. в среднем две заявки на обработку деталей в час.

.

Граф состояний системы представлен на рис. 4.8.

Возможные состояния системы: S 0 – в СМО (на участке) нет ни одной заявки; S 1 – в СМО (на участке) одна заявка; S 2 – в СМО (на участке) две заявки; S 3 – в СМО (на участке) три заявки (заняты все три станка).

Вероятность того, что все станки свободны:

.

Вероятность того, что один станок занят

.

Вероятность того, что два станка заняты

.

Вероятность того, что все три станка заняты

.

Абсолютная пропускная способность

дет./ч.

Относительная пропускная способность

;

Вероятность отказа

.

Среднее число занятых каналов (станков)

.

Таким образом, в среднем в этой системе обрабатывается 1,82 дет./ч (примерно 91 % направляемых деталей), при этом примерно 9 % деталей направляется для обработки на другие участки. Одновременно в среднем работает в основном один станок (). Но из-за случайных характеристик потока заявок иногда работают одновременно все три станка (р з = 0,09), отсюда 9 % отказов.

Пример № 2. Пусть , Р отк £ 0,03 (т. е. £ 3 %). Найти оптимальное число каналов n опт, обеспечивающее минимум затрат на систему, при условии достижения требуемого уровня ее безотказной работы.

Целевая функция (затраты на СМО) запишется:

y = cn ® min,

где c – постоянная величина.

; D и расходы на эксплуатацию R . Чтобы решить эту задачу, необходимо найти оптимальное число каналов n опт, обеспечивающее максимум целевой функции P = D R ® max, т. е. нужно максимизировать прибыль в единицу времени.

Модели управления запасами

Управление запасами – это поддержание оптимальной величины текущего остатка запасов с целью:

Недопущения образования избыточного уровня запасов, ведущего к излишней иммобилизации средств предприятия и дополнительным складским издержкам;

Обеспечения нормальной ритмичности производственно-финансового цикла.

Задача управления запасами возникает, когда необходимо создать запас материальных ресурсов или предметов потребления с целью удовлетворения спроса на заданном интервале времени. Для обеспечения непрерывного и эффективного функционирования практически любой организации необходимо создание запасов. В любой задаче управления запасами требуется определить количество заказываемой продукции и сроки размещения заказов.

Спрос можно удовлетворить двумя способами:

Путем однократного создания запаса на весь рассматриваемый период времени;

Посредством создания запаса для каждой единицы времени этого периода.

Эти два случая соответствуют избыточному запасу (по отношению к единице времени) и недостаточному запасу (по отношению к полному периоду времени).

При избыточном запасе требуются более высокие удельные (отнесенные к единице времени) капитальные вложения, но дефицит возникает реже и частота размещения заказов меньше.

При недостаточном запасе удельные капитальные вложения снижаются, но частота размещения заказов и риск дефицита при этом возрастают.

Для любого из этих двух крайних случаев характерны значительные экономические потери. Таким образом, решения относительно размера заказа и момента его размещения могут основываться на минимизации соответствующей функции общих затрат, включающих затраты, обусловленные потерями от избыточного запаса и дефицита.

Система массового обслуживания имеет один канал. Входящий поток заявок на обслуживание - простейший поток с интенсивно­стью λ,. Интенсивность потока обслуживания равна μ, (т. е. в сред­нем непрерывно занятый канал будет выдавать μ обслуженных за­явок). Длительность обслуживания - случайная величина, подчи­ненная показательному закону распределения. Поток обслужива­нии является простейшим пуассоновским потоком событий. Заявка, поступившая в момент, когда канал занят, становится в очередь и ожидает обслуживания.

Предположим, что независимо от того, сколько требований по­ступает на вход обслуживающей системы, данная система (очередь + обслуживаемые клиенты) не может вместить более N -требований (заявок), т. е. клиенты, не попавшие в ожидание, вынуждены об­служиваться в другом месте. Наконец, источник, порождающий за­явки на обслуживание, имеет неограниченную (бесконечно боль­шую) емкость.

Граф состояний СМО в этом случае имеет вид, показанный на рис. 2


Рисунок 5.2 – Граф состояний одноканальной СМО с ожиданием (схема гибели и размножения)

Состояния СМО имеют следующую интерпретацию:

S0 - «канал свободен»;

S1 - «канал занят» (очереди нет);

S2 - «канал занят» (одна заявка стоит в очереди);

Sn - «канал занят» (п - 1 заявок стоит в очереди);

SN - «канал занят» (N - 1 заявок стоит в очереди).

Стационарный процесс в данной системе будет описываться следующей системой алгебраических уравнений:

(10)


п - номер состояния.

Решение приведенной выше системы уравнений (10) для на­шей модели СМО имеет вид


(11)

(12)

Следует отметить, что выполнение условия стационарности

для данной СМО не обязательно, поскольку число допускаемых в обслуживающую систему заявок контролируется путем введения ограничения на длину очереди (которая не может превы­шать N - 1), а не соотношением между интенсивностями входного потока, т. е. не отношением λ/μ=ρ

Определим характеристики одноканальной СМО с ожиданием и ограниченной длиной очереди, равной (N - 1):

вероятность отказа в обслуживании заявки:

(13)

относительная пропускная способность системы:

(14)

абсолютная пропускная способность:

среднее число находящихся в системе заявок:

(16)

среднее время пребывания заявки в системе:

(17)

средняя продолжительность пребывания клиента (заявки) в очереди:

(18)

среднее число заявок (клиентов) в очереди (длина очереди):

(19)

Рассмотрим пример одноканальной СМО с ожиданием.

Пример 2. Специализированный пост диагностики представ­ляет собой одноканальную СМО. Число стоянок для автомоби­лей, ожидающих проведения диагностики, ограниченно и равно 3[(N - 1) = 3]. Если все стоянки заняты, т. е. в очереди уже нахо­дится три автомобиля, то очередной автомобиль, прибывший на диагностику, в очередь на обслуживание не становится. Поток ав­томобилей, прибывающих на диагностику, распределен по закону Пуассона и имеет интенсивность λ = 0,85 (автомобиля в час). Вре­мя диагностики автомобиля распределено по показательному зако­ну и в среднем равно 1,05 час.



Требуется определить вероятностные характеристики поста ди­агностики, работающего в стационарном режиме.

Решение

1. Параметр потока обслуживаний автомобилей:

2. Приведенная интенсивность потока автомобилей определя­ется как отношение интенсивностей λ, и μ, т. е.

3. Вычислим финальные вероятности системы

4. Вероятность отказа в обслуживании автомобиля:

5. Относительная пропускная способность поста диагностики:

6. Абсолютная пропускная способность поста диагностики

(автомобиля в час).

7. Среднее число автомобилей, находящихся на обслуживании и в очереди (т.е. в системе массового обслуживания):

8. Среднее время пребывания автомобиля в системе:

9. Средняя продолжительность пребывания заявки в очереди на обслуживание:

10. Среднее число заявок в очереди (длина очереди):

Работу рассмотренного поста диагностики можно считать удов­летворительной, так как пост диагностики не обслуживает автомо­били в среднем в 15,8% случаев (Р отк = 0,158).

Перейдем теперь к рассмотрению одноканальной СМО с ожида­нием без ограничения на вместимость блока ожидания (т. е. N →∞). Остальные условия функционирования СМО остаются без изме­нений.

Стационарный режим функционирования данной СМО суще­ствует при t →∞ оо для любого n = 0, 1, 2, ... и когда λ < μ. Система алгебраических уравнений, описывающих работу СМО при t →∞ для любого n = 0, 1, 2, ... , имеет вид


(20)


Решение данной системы уравнений имеет вид

где ρ = λ/μ < 1.


Характеристики одноканальной СМО с ожиданием, без огра­ничения на длину очереди, следующие:

Среднее число находящихся в системе клиентов (заявок) на обслуживание:

(22)

средняя продолжительность пребывания клиента в системе:

(23)

среднее число клиентов в очереди на обслуживании:

(24)

средняя продолжительность пребывания клиента в очереди:

(25)

Пример 3. Вспомним о ситуации, рассмотренной в примере 2, где речь идет о функционировании поста диагностики. Пусть рассматриваемый пост диагностики располагает неограниченным количеством площадок для стоянки прибывающих на обслужива­ние автомобилей, т. е. длина очереди не ограничена.

Требуется определить финальные значения следующих вероят­ностных характеристик:

вероятности состояний системы (поста диагностики);

Среднее число автомобилей, находящихся в системе (на обслу­живании и в очереди);

Среднюю продолжительность пребывания автомобиля в системе (на обслуживании и в очереди);

Среднее число автомобилей в очереди на обслуживании;

Среднюю продолжительность пребывания автомобиля в очереди.

1. Параметр потока обслуживания μ и приведенная интенсив­ность потока автомобилей ρ определены в примере 2:

μ= 0,952; ρ = 0,893.

2. Вычислим предельные вероятности системы по формулам

Р 0 = 1 - ρ = 1 - 0,893 = 0,107;

Р 1 = (1 - ρ) . ρ = (1 - 0,893)*0,893 = 0,096;

Р 2 = (1 - ρ) . ρ 2 = (1 - 0,893)*0,8932 = 0,085;

Р з = (1 - ρ) . ρ 3 = (1 - 0,893)*0,8933 = 0,076;

Р 4 = (1 - ρ) . ρ 4 = (1 - 0,893)* 0,8934 = 0,068;

Р 5 = (1 - ρ) . ρ 5 = (1 - 0,893)*0,8935 = 0,061 и т. д.

Следует отметить, что Р 0 определяет долю времени, в течение которого пост диагностики вынужденно бездействует (простаива­ет). В нашем примере она составляет 10,7%, так как Р 0 = 0,107.

3. Среднее число автомобилей, находящихся в системе (на об­служивании и в очереди):

4. Средняя продолжительность пребывания клиента в системе:

5. Среднее число автомобилей в очереди на обслуживание:

6. Средняя продолжительность пребывания автомобиля в очереди:

7. Относительная пропускная способность системы:

т. е. каждая заявка, пришедшая в систему, будет обслужена.

8. Абсолютная пропускная способность:

А = λ* q = 0,85 * 1 = 0,85.

Следует отметить, что предприятие, осуществляющее диагнос­тику автомобилей, прежде всего интересует количество клиентов, которое посетит пост диагностики при снятии ограничения на длину очереди.

Допустим, в первоначальном варианте количество мест для сто­янки прибывающих автомобилей было равно трем (см. пример 2). Частота m возникновения ситуаций, когда прибывающий на пост диагностики автомобиль не имеет возможности присоединиться к очереди:

m=λ*P N

В нашем примере при N = 3 + 1 = 4 и ρ = 0,893

m=λ*P 0 *ρ 4 =0.85*0.248*0.8934=0.134 автомобиля в час.

При 12-часовом режиме работы поста диагностики это эквива­лентно тому, что пост диагностики в среднем за смену (день) будет терять 12 * 0,134 = 1,6 автомобиля. Снятие ограничения на длину очереди позволяет увеличить ко­личество обслуженных клиентов в нашем при мере в среднем на 1,6 автомобиля за смену (12 ч. работы) поста диагностики. Ясно, что ре­шение относительно расширения площади для стоянки автомоби­лей, прибывающих на пост диагностики, должно основываться на оценке экономического ущерба, который обусловлен потерей кли­ентов при наличии всего трех мест для стоянки этих автомобилей.

4.4 Многоканальная модель с пуассоновским входным потоком и экспоненциальным распределением длительности обслуживания

В подавляющем большинстве случаев на практике системы мас­сового обслуживания являются многоканальными, и, следователь­но, модели с n обслуживающими каналами (где n > 1) представляют несомненный интерес.

Процесс массового обслуживания, описываемый данной моде­лью, характеризуется интенсивностью входного потока λ, при этом параллельно может обслуживаться не более n клиентов (заявок). Средняя продолжительность обслуживания одной заявки равняет­ся l/μ. Входной и выходной потоки являются пуассоновскими. Ре­жим функционирования того или иного обслуживающего канала не влияет на режим функционирования других обслуживающих ка­налов системы, причем длительность процедуры обслуживания каждым из каналов является случайной величиной, подчиненной экспоненциальному закону распределения. Конечная цель исполь­зования n параллельно включенных обслуживающих каналов за­ключается в повышении (по сравнению с одноканальной систе­мой) скорости обслуживания требований за счет обслуживания од­новременно n клиентов.

Граф состояний многоканальной системы массового обслужи­вания с отказами имеет вид, показанный на рис. 4.3.

Состояния данной СМО имеют следующую интерпретацию:

S 0 - все каналы свободны;

S 1 - занят один канал, остальные свободны;

……………………….

S k - заняты ровно k каналов, остальные свободны;

……………………….

S n - заняты все n каналов, заявка получает отказ в обслужива­нии.

Уравнения Колмогорова для вероятностей состояний системы Р 0 , …, P k ,…, Р n будут иметь следующий вид:

(26)

Начальные условия решения системы таковы:

P 0 (0)=1, P 1 (0)=P 2 (0)=…=P k (0)=…=P n (0)=0.

Стационарное решение системы имеет вид:

(27)

Формулы для вычисления вероятностей P k называются форму­лами Эрланга.

Определим вероятностные характеристики функционирования многоканальной СМО с отказами в стационарном режиме:

Вероятность отказа:

(28)

так как заявка получает отказ, если приходит в момент, когда все n каналов заняты. Величина Р отк характеризует полноту обслужива­ния входящего потока;

Вероятность того, что заявка будет принята к обслуживанию (она же - относительная пропускная способность системы q) допол­няет Р отк до единицы:

(29)

Абсолютная пропускная способность

A=λ*q=λ*(1-P отк); (30)

Среднее число каналов, занятых обслуживанием следующее:

(31)

Оно характеризует степень загрузки системы.

Пример 4. Пусть n-канальная СМО представляет собой вы­числительный центр (ВЦ) с тремя (n = 3) взаимозаменяемыми ПЭВМ для решения поступающих задач. Поток задач, поступаю­щих на ВЦ, имеет интенсивность λ = 1 задаче в час. Средняя про­должительность обслуживания t обсл = 1,8 час. Поток заявок на ре­шение задач и поток обслуживания этих заявок являются простей­шими.

Требуется вычислить финальные значения:

Вероятности состояний ВЦ;

Вероятности отказа в обслуживании заявки;

Относительной пропускной способности ВЦ;

Абсолютной пропускной способности ВЦ;

Среднего числа занятых ПЭВМ на ВЦ.

Определите, сколько дополнительно надо приобрести ПЭВМ, чтобы увеличить пропускную способность ВЦ в 2 раза.

1. Определим параметр μ потока обслуживании:

ρ=λ/μ=1/0.555=1.8

3. Предельные вероятности состояний найдем по формулам Эр-
ланга (27):

P 1 =1.8*0.186=0.334;

P 2 =1.62*0.186=0.301;

P 3 =0.97*0.186=0.180.

4. Вероятность отказа в обслуживании заявки

P отк =P 3 =0.180

5. Относительная пропускная способность ВЦ

q = 1 - P отк = 1 - 0.180 = 0,820.

6. Абсолютная пропускная способность ВЦ

А = λ q = 1 0,820 = 0,820.

7. Среднее число занятых каналов - ПЭВМ

Таким образом, при установившемся режиме работы СМО в среднем будет занято 1,5 компьютера из трех - остальные полтора будут простаивать. Работу рассмотренного ВЦ вряд ли можно счи­тать удовлетворительной, так как центр не обслуживает заявки в среднем в 18% случаев (P 3 =0,180). Очевидно, что пропускную способность ВЦ при данных λ и μ можно увеличить только за счет увеличения числа ПЭВМ.

Определим, сколько нужно использовать ПЭВМ, чтобы сокра­тить число не обслуженных заявок, поступающих на ВЦ, в 10 раз, т.е. чтобы вероятность отказа в решении задач не превосходила 0,0180. Для этого используем формулу (28):

Составим следующую таблицу:

n
P 0 0,357 0,226 0,186 0,172 0,167 0,166
P отк 0,643 0,367 0,18 0,075 0,026 0,0078

Анализируя данные таблицы, следует отметить, что расшире­ние числа каналов ВЦ при данных значениях λ и μ до 6 единиц ПЭВМ позволит обеспечить удовлетворение заявок на решение за­дач на 99,22%, так как при п = 6 вероятность отказа в обслужива­нии (Р отк) составляет 0,0078.

4.5 Многоканальная система массового обслуживания с ожиданием

Процесс массового обслуживания при этом характери­зуется следующим: входной и выходной потоки являются пуассоновскими с интенсивностями λ и μ соответственно; параллельно обслуживаться могут не более С клиентов. Система имеет С кана­лов обслуживания. Средняя продолжительность обслуживания одного клиента равна

В установившемся режиме функционирование многоканальной СМО с ожиданием и неограниченной очередью может быть описа­но с помощью системы алгебраических уравнений:


(32)


Решение системы уравнений (32) имеет вид

(33) (34)


(35)


Решение будет действительным, если выполняется следующее условие:

Вероятностные характеристики функционирования в стационар­ном режиме многоканальной СМО с ожиданием и неограниченной оче­редью определяются по следующим формулам:

Вероятность того, что в системе находится n клиентов на обслу­живании, определяется по формулам (33) и (34);

Среднее число клиентов в очереди на обслуживание

(36)

Среднее число находящихся в системе клиентов (заявок на обслуживание и в очереди)

Средняя продолжительность пребывания клиента (заявки на обслуживание) в очереди

Средняя продолжительность пребывания клиента в системе

Рассмотрим примеры многоканальной системы массового об­служивания с ожиданием.

Пример 5. Механическая мастерская завода с тремя постами (каналами) выполняет ремонт малой механизации. Поток неис­правных механизмов, прибывающих в мастерскую, - пуассоновский и имеет интенсивность λ= 2,5 механизма в сутки, среднее время ремонта одного механизма распределено по показательному закону и равно t = 0,5 сут. Предположим, что другой мастерской на заводе нет, и, значит, очередь механизмов перед мастерской мо­жет расти практически неограниченно.

Требуется вычислить следующие предельные значения вероят­ностных характеристик системы:

Вероятности состояний системы;

Среднее число заявок в очереди на обслуживание;

Среднее число находящихся в системе заявок;

Среднюю продолжительность пребывания заявки в очереди;

Среднюю продолжительность пребывания заявки в системе.

1. Определим параметр потока обслуживаний

μ = 1/t=1/0,5 = 2.

2. Приведенная интенсивность потока заявок

ρ = λ/μ = 2,5/2,0 = 1,25,

при этом λ/μ *с= 2,5/2 * 3 = 0,41.

Поскольку λ/μ * с <1 , то очередь не растет безгранично и в сис­теме наступает предельный стационарный режим работы.

3. Вычислим вероятности состояний системы:

4. Вероятность отсутствия очереди у мастерской

5. Среднее число заявок в очереди на обслуживание

6. Среднее число находящихся в системе заявок

L s = L q + ρ = 0,111 + 1,25 = 1,361.

7. Средняя продолжительность пребывания механизма в очереди на обслуживание

8. Средняя продолжительность пребывания механизма в мас­терской (в системе)