Укрупненный расход тепла на отопление. Расход теплоты на отопление. Исходные данные для проектирования системы отопления

Расчет потребления тепла на отопление. Отопление является наиболее крупным потребителем тепла. Длительность потреб­ления тепла на нужды отопления соответствует продолжитель­ности отопительного периода, т. е. числу суток с устойчивой среднесуточной температурой наружного воздуха t н, ниже ус­тановленного предела. Например, по Строительным нормам и правилам СНиП II-A. 6-72 «Строительная климатология и гео­физика. Нормы проектирования» такому пределу соответствует температура наружного воздуха, равная +8°С. Как только эта температура становится ниже или выше указанного предела, то соответственно включают или выключают систему отопления.

Расход тепла на отопление зависит не только от климати­ческих условий, но и от конструктивных характеристик здания и его расположения.

Обеспечение тепловой энергией зда­ний производится для поддержания в них заданного темпера­турного режима. В этом случае предполагается, что тепловая энергия полностью компенсирует теплопотери - трансмиссион­ные и от инфильтрации. При заданных ограждающих конструк­циях трансмиссионные теплопотери определяются в основном температурой наружного воздуха t н теплопотери от инфильтра­ции, кроме того, скоростью ветра и влажностью воздуха. Таким образом, изменение расхода тепла обратно пропорционально изменению t н и прямо пропорционально изменению скорости ветра и влажности воздуха. Минимальный расход тепла соответствует началу отопительного периода. По мере снижения t н потребность в тепле возрастает и становится максимальной при минимальной t н.

Комплексная и параллельная разработка всех частей проек­та приводит к необходимости предварительной оценки общих теплопотерь зданиями. При этом используют, как правило, метод приближенного расчета по укрупненным измерителям. Для трансмиссионных теплопотерь укрупнённым измерителем явля­ется удельная тепловая отопительная характеристика здания q o .Она представляет собой количество тепла, необходимое для компенсации теплопотерь одним кубическим метром здания в единицу времени при разности температур в один градус между воздухом в помещении t вн и наружным t н. Удельная харак­теристика q o изменяется обратно пропорционально объёму зда­ния. Для некоторых зданий она приведена в табл. 1.

Для расчета теплопотерь от инфильтрации такого измерите­ля нет. На практике приближенную их величину при определе­нии трансмиссионных теплопотерь учитывают соответствую­щим коэффициентом, который зависит от многих факторов: вы­соты и объема помещений, расположения и площади проемов, количества щелей в ограждающих конструкциях и величины их раскрытия, а также температуры наружного воздуха, скорости и направления ветра. На основании практических данных указанный коэффициент может быть принят равным: для общественных здании 0,1-0,3; для промышленных зданий при наличии одинарного остекления и без специальных уплотнений притворов дверей и ворот, а также для крупных общественных зданий - 0,3-0,6; для крупных цехов, имеющих большегабаритные ворота, - 0,5-1,5 и даже 2.



Таблица 1.

Средняя температура воздуха в зданиях и удельные тепловые характеристики зданий заданного объёма.

Продолжение таблицы 1.

Для жилых и общественных зданий максимальный расход тепла на отопление можно определить по укрупненному показателю, отнесенному одному квадратному метру жилой площади. Этим показателем удобно пользоваться в том случае, когда известно лишь количество жилой площади, намечаемое к вводу к эксплуатацию в заданном районе. Максимальный часовой расход тепла на отопление жилых зданий, приходящийся на 1 м 2 жилой площади при температурах наружного воз­духа 0, -10, -20, -30, -40 о С соответственно равен: 90; 130; 150; 175; 185 Вт/м 2 . При этом расход тепла на отопление общественных зданий принимают в размере 25% расхода тепла для жилых.

Максимальный расчетный расход тепла Q o , Вт, на отопление при установившемся тепловом режиме здания, отнесенный к его объему и разности температур, определяют по формуле

где - коэффициент, учитывающий теплопотери от инфильтрации; - удельная отопительная характеристика здания, Вт/(м 3 ·К); - поправочный коэффициент к отопительной характеристике на наружную температуру воздуха; с некоторым округлением можно определять по формуле ; - объём здания по наружному обмеру без подвала, м 3 ; - средняя температура воздуха в отапливаемом здании, о С; - температура наружного воздуха, о С: при проектировании отопления принимается по климатологическим данным как средняя наиболее холодных пятидневок из восьми зим за 50-летний период.

Температура воздуха в помещении задается либо санитар­ными нормами, либо технологическими процессами с учетом требований санитарных норм. Значения средней температуры воздуха в некоторых зданиях приведены в табл.1.

Рис.1. Графики расхода тепла на нужды отопления а - часовой; б - сезонный

Формулу (1) можно использовать для определения часового расхода тепла в любой период отопительного сезона, подставляя значение t н, соответствующее этому периоду. Так, напри­мер, начало отопительного сезона характеризуется минималь­ными затратами тепловой энергии. В этот момент расчетная температура наружного воздуха наиболее высокая, t н =8 о С.

Как следует из формулы (1), изменение расхода тепла при изменении t н имеет линейную зависимость. Чтобы знать характер изменения в течение всего сезона, достаточно опреде­лить расходы тепла при максимальном t н и минимальном значениях t н.о. . Обычно такое изменение представляют графически (рис. 1). На рис.1а на оси абсцисс отложены значения температуры наружного воздуха, на оси ординат-расходы тепла. Точки А и Б соответствуют максимальному и минималь­ному расходам тепла. Линия АБ - линейная зависимость - из­менение часового расхода тепла в течение холодного периода. По такому графику можно определить часовой расход тепла на отопление при любом значении £н в указанных пределах. Для этого необходимо из точки заданного значения t н на оси абсцисс восставить перпендикуляр до пересечения с линией АБ. Точка пересечения будет соответствовать искомому расходу тепла. Так, на рис. 1а пунктирной линией показано опреде­ление среднечасового расхода тепла при средней темпе­ратуре наружного воздуха за отопительный период .

В промышленных цехах, а также в ряде общественных зда­ний во время перерыва в работе, а также в выходные, и праздничные дни, не требуется поддерживать температуру в помещении t в.н, на заданном уровне и соответственно затрачивать мак­симальное количество тепла. В это время температура возду­ха в помещении снижается до +5°С и обеспечивается специаль­ным дежурным отоплением. Часовой расход тепла в этот период можно определить по формуле (1), принимая . Пре­дел снижения диктуется условиями надежной эксплуатации сооружений. Сокращение расхода тепла за этот период учиты­вают при определении годовой потребности.

В заданном климатическом районе годовой расход тепла оп­ределяют по числу суток в отопительном периоде и по значени­ям за каждые сутки или по средней t н за весь рассматривае­мый период. Степень равномерности потребления тепла здани­ем по суткам и за неделю выявляют в зависимости от режима работы предприятия.

Годовую потребность в тепловой энергии, МВт, для отоп­ления административных и промышленных зданий с учетом ее снижения во внерабочее время, а также в выходные и пред­праздничные дни определяют по выражению

где - число часов работы предприятия в сутки; - число суток в отопительном периоде; - сумма выходных и праздничных дней в отопительном периоде; - температура наружного воздуха, средняя за отопительный период, о С; 24 -число часов в сутках; температура воздуха в здании в нерабочее время, о С.

Для зданий с равномерным потреблением тепла в течение суток, например, жилых и некоторых общественных с круглосуточным режимом работы, формула (2) упрощается, так как =0, =24,

Для обеспечения эксплуатационного режима работы теплоснабжающих устройств определяют изменение отопительной нагрузки во времени в течение всего отопительного периода. Наиболее целесообразно годовое потребление тепла во времени представлять графически - рис. 1б , где на оси абсцисс от­ложены последовательно с нарастающим итогом часы стоя­ния одинаковых температур , начиная с минимальных, а по оси ординат - расход тепла, соответствующий этим температу­рам.

Для конкретного объекта построение трафика начинают е выявления числа часов стояния одинаковых температур . Затем по формуле (1) с учетом возможного снижения потребления тепла во внерабочее время рассчитывают требуемый расход тепла. Полученные результаты наносят на координатную сетку графика, откладывая их на перпендикулярах, восставленных на оси абсцисс в точках изменения наружных температур. Из то­чек расхода тепла, отложенных на перпендикулярах, проводят линии, параллельные оси абсцисс, длиной, равной числу стоя­ния одинаковых температур. Правые верхние углы образовав­шихся прямоугольников соединяют плавной кривой. Эта кри­вая характеризует потребление тепла для отопления данного объекта и является основой для разработки режима работы системы теплоснабжения.

График расхода тепла в течение года можно построить, ис­пользуя график часовых расходов. Для этого часовые расходы переносят на ординаты, соответствующие наружным температурам годового графика. Точки пересечения часовых расходов тепла с ординатами, соответствующими предельным значениям температур в заданном интервале, соединяют плавной кри­вой. Площадь, ограниченная осью абсцисс, максимальной и ми­нимальной ординатами и плавной кривой (см. рис.1б кри­вая A 1 Б 1) пропорциональна годовому расходу тепла. При сред­ней температуре за отопительный период форма годового графика условно будет иметь вид прямоугольника, в котором ордината соответствует среднечасовому расходу теп­ла (см. пунктирную линию на рис. 1б ).

II.1.2. Расчет потребления тепла на вентиляцию

В системах вен­тиляции тепло затрачивается на подогрев свежего приточного воздуха до заданной температуры. Расход тепла , Вт, опре­деляется количеством, температурой и влажностью подогревае­мого воздуха

где - теплоемкость воздуха, кДж/(кг·К); - плотность воздуха, кг/м 3 ; V- объем приточного воздуха, м 3 /ч; и - температура воздуха за на­гревателем и перед ним, о С; 1/3,6 - теплоэнергетический эквивалент для пере­вода кДж/ч в Вт, т. е, теплоты, Дж, в тепловую энергию, расходуемую в единицу времени, Вт.

Объем приточного воздуха соответствует объему удаляемого. Это равенство является основным правилом при решении воз­душного баланса помещения. Объем удаляемого воздуха рассчитывают из условия обеспечения воздушной среды, отвечаю­щей требованиям санитарных норм, по количеству вредных вы­делений (пыль, газы, аэрозоль, влага и т. п.) в помещении. Кроме того, на объем удаляемого воздуха влияет принятый способ воздухообмена.

Организация воздухообмена в помещений решается в основном одним из двух вариантов. Там, где вредные выделения можно удалить непосредственно на месте их образования, осу­ществляют наиболее эффективную местную вентиляцию, В этом случае объем удаляемого воздуха становится минимальным, так как вентилируется только ограниченная рабочая зона в помещении. При этом расход тепла рассчитывают по формуле (4).

Если вредные выделения распространяются по всему объему, применяют общеобменную вентиляцию, создающую в по­мещении требуемые условия воздушной среды путем разбавле­ния вредных выделений чистым приточным воздухом. Воздухо­обмен, основанный на этом принципе, требует наибольшего объема вентилируемого воздуха, а следовательно, и наиболь­шего расхода тепла.

При разработке системы теплоснабжения расход тепла да нужды общеобменной вентиляции оценивают аналогично отоп­лению, как правило, по укрупненным измерителям. Таким из­мерителем является удельная тепловая вентиляционная харак­теристика , отнесенная к объему здания. Она представляет со­бой количество тепла, необходимое для вентиляции 1 м 3 здания в единицу времени при перепаде температур 1 о.

Используя удельную характеристику, расход тепла на нуж­ды общеобменной вентиляции , Вт, отнесенный к объему зда­ния, определяют по формуле

где - удельная вентиляционная характеристика здания, Вт/(м 3 ·К); - температура наружного воздуха, °С; при проектировании вентиляции прини­мается по климатологическим данным как средняя за наиболее холодный пе­риод, составляющий 15% в отопительном сезоне.

Для некоторых зданий массового строительства значение вентиляционной характеристики указано в табл. 1.

Удельную вентиляционную характеристику можно опреде­лить также по кратности обмена и объему вентилируемого по­мещения

где m - кратность обмена, представляющая собой отношение количества при­точного воздуха, подаваемого в единицу времени в 1 ч, к объему вентилируе­мого помещения.

Кроме того, максимальный расход тепла на нужды общеоб­менной вентиляции общественных зданий определяют по укрупненному показателю для районов, где известно лишь коли­чество жилой площади, намечаемое к строительству. Этот по­казатель относят к 1 м 2 жилой площади и в зависимости от температуры наружного воздуха при 0, -10, -20, -30 и 40 о С принимают соответственно равным: 9; 13; 15; 17,5 и 18,5 Вт/м 2 .

Температура наружного воздуха, принимаемая при расчете тепла на вентиляцию, не является одинаковой для всех поме­щений. Она зависит от принятого способа воздухообмена. При расчете местной вентиляции ее берут равной, как и для отопления, т. е, . Значение этой температуры при общеоб­менной вентиляции выше, чем при отоплении. Здесь она опре­деляется как средняя за наиболее холодный период продолжи­тельностью, равной 15% отопительного сезона. Допустимое по­вышение уровня при температурах наружного воздуха наи­более холодного периода обусловлено возможностью увеличе­ния рециркуляции воздуха. В период пониженных наружных температур требуемая температура приточного воздуха дости­гается путем подмешивания к наружному более теплого возду­ха, забираемого из вентилируемого помещения. Благодаря это­му уменьшается объем приточного свежего воздуха, поступаю­щего на подогрев, и соответственно сокращается потребность в тепловой энергии на нужды общеобменной вентиляции. Следует отметить, что указанное повышение , обусловленное сниже­нием потребности в тепловой энергии в часы ее максимального расхода, допускается только для общеобменной вентиляции,и то в тех помещениях, в которых разрешается рециркуляция воздуха. В цехах же, где по характеру вредных выделений ре­циркуляция воздуха не допускается, за расчетную температуру принимают отопительную независимо от принятого способа воз­духообмена, т. е. .

Расход тепла на вентиляцию, так же как и на отопление, за­висит от наружной температуры. При местной и общеобменной вентиляции без рециркуляции воздуха эта зависимость анало­гична отопительной (рис.2а , линия АВ).

При общеобменной вентиляции с рециркуляцией воздуха аналогия наблюдается только в диапазоне наружных температур от +8 до t н.в. (линия БВ). При дальнейшем снижении тем­пературы наружного воздуха, т. е. когда t н. t н.в. , расход тепла не изменяется и сохраняется на уровне t н.в. течение всего наи­более холодного периода, линия расхода ГБ параллельна оси абсцисс.

Годовой расход тепла на вентиляцию, МВт определяют на основании часового при соответствующем способе воздухообмена в зависимости от числа часов работы системы вентиляции.

При общеобменной вентиляции с рециркуляцией воздуха: с перерывами работы в течение суток и в выходные дни

Если имеются сведения о продолжительности умеренно хо­лодного периода (для некоторых городов см. табл.2), то расчеты по формулам (7) - (10) значительно упрощаются.

Режим работы системы вентиляции разрабатывают на основании годового графика потребления тепла. Построение этого графика (рис.2б ) производится аналогично отопительному для систем вентиляции без рециркуляции воздуха. Для общеобменной вентиляции имеется особенность. Здесь график разделен на две части: первая (левая) - соответствует наиболее холод­ному периоду и имеет постоянный расход тепла в течение это­го периода. Линия Г 1 Б 1 параллельна оси абсцисс, расход тепла определяется площадью прямоугольника О - Г 1 – Б 1 – 0,15 n o . Вторая часть, соответствующая умеренно холодному периоду, имеет переменный расход тепла - линия Б 1 В 1 .

Таблица 2.

Средняя температура наружного воздуха и продолжительность умеренно холодного периода в отопительном сезоне

Прежде чем приступать к закупке материалов и монтажу систем теплоснабжения дома или квартиры, необходимо провести расчет отопления, исходя из площади каждого помещения. Базовые параметры для проектирования обогрева и расчета тепловой нагрузки:

  • Площадь;
  • Количество оконных блоков;
  • Высота потолков;
  • Расположение комнаты;
  • Теплопотери;
  • Теплоотдача радиаторов;
  • Климатический пояс (температура наружного воздуха).

Методика, описанная ниже, применяется для расчета количества батарей для площади помещения без дополнительных источников отопления (теплые полы, кондиционеры и т.д.). Рассчитать отопление можно двумя способами: по простой и усложненной формуле.

До начала проектирования теплоснабжения стоит решить, какие именно радиаторы будут устанавливаться. Материал, из которого изготавливаются батареи обогрева:

  • Чугун;
  • Сталь;
  • Алюминий;
  • Биметалл.

Оптимальным вариантом считаются алюминиевые и биметаллические радиаторы. Самая высокая тепловая отдача у биметаллических устройств. Чугунные батареи долго нагреваются, но после отключения отопления температура в помещении держится довольно долго.

Простая формула для проектирования количества секции в радиаторе обогрева:

K = Sх(100/R), где:

S – площадь помещения;

R – мощность секции.

Если рассматривать на примере с данными: комната 4 х 5 м, биметаллический радиатор, мощность 180 Вт. Расчет будет выглядеть так:

K = 20*(100/180) = 11,11. Итак, для комнаты площадью 20 м 2 необходимой для установки является батарея с минимум 11-ю секциями. Или, например, 2 радиатора по 5 и 6 ребер. Формула используется для помещений с высотой потолка до 2,5 м в стандартном здании советской постройки.

Однако такой расчет системы отопления не учитывает теплопотери здания, также не берется в расчет температура наружного воздуха дома и количество оконных блоков. Поэтому следует также брать во внимание эти коэффициенты, для окончательного уточнения количества ребер.

Вычисления для панельных радиаторов

В случае когда предполагается установка батареи с панелью вместо ребер, используется следующая формула по объему:

W = 41хV, где W – мощность батареи, V – объем комнаты. Число 41 – норма средней годовой мощности обогрева 1 м 2 жилого помещения.

В качестве примера можно взять помещение площадью 20 м 2 и высотой 2,5 м. Значение мощности радиатора по объему помещения в 50 м 3 будет равно 2050 Вт, или 2 кВт.

Расчет теплопотерь

H2_2

Основные потери тепла происходят через стены помещения. Для расчета нужно знать коэффициент теплопроводности наружного и внутреннего материала, из которого построен дом, толщину стены здания, также важна средняя температура наружного воздуха. Основная формула:

Q = S х ΔT /R, где

ΔT – разница температуры снаружи и внутреннего оптимального значения;

S – площадь стен;

R – тепловое сопротивление стен, которое, в свою очередь, рассчитывается по формуле:

R = B/K, где B – толщина кирпича, K – коэффициент теплопроводности.

Пример расчета: дом построен из ракушняка, в камень, находится в Самарской области. Теплопроводность ракушняка в среднем составляет 0,5 Вт/м*К, толщина стены – 0,4 м. Учитывая средний диапазон, минимальная температура зимой -30 °C. В доме, согласно СНИП, нормальная температура составляет +25 °C, разница 55°C.

Если комната угловая, то обе ее стены непосредственно контактируют с окружающей средой. Площадь наружных двух стен комнаты 4х5 м и высотой 2,5 м: 4х2,5 + 5х2,5 = 22,5 м 2 .

R = 0,4/0,5 = 0,8

Q = 22,5*55/0,8 = 1546 Вт.

Кроме того, необходимо учитывать утепление стен помещения. При отделке пенопластом наружной площади теплопотери уменьшаются примерно на 30%. Итак, окончательная цифра составит около 1000 Вт.

Расчет тепловой нагрузки (усложненная формула)

Схема теплопотерь помещений

Чтобы вычислить окончательный расход тепла на отопление, необходимо учесть все коэффициенты по следующей формуле:

КТ = 100хSхК1хК2хК3хК4хК5хК6хК7, где:

S – площадь комнаты;

К – различные коэффициенты:

K1 – нагрузки для окон (в зависимости от количества стеклопакетов);

K2 – тепловой изоляции наружных стен здания;

K3 –нагрузки для соотношения площади окон к площади пола;

K4 – температурного режима наружного воздуха;

K5 – учитывающий количество наружных стен комнаты;

K6 – нагрузки, исходя из верхнего помещения над рассчитываемой комнатой;

K7 – учитывающий высоту помещения.

Как пример, можно рассмотреть ту же комнату здания в Самарской области, утепленную снаружи пенопластом, имеющую 1 окно с двойным стеклопакетом, над которой расположено отапливаемое помещение. Формула тепловой нагрузки будет выглядеть следующим образом:

KT = 100*20*1,27*1*0,8*1,5*1,2*0,8*1= 2926 Вт.

Расчет отопления ориентирован именно на эту цифру.

Расход тепла на отопление: формула и корректировки

Исходя из выше сделанных расчетов, для отопления комнаты необходимо 2926 Вт. Учитывая тепловые потери, потребности составляют: 2926 + 1000 = 3926 Вт (KT2). Для расчета количества секций используют следующую формулу:

K = KT2/R, где KT2 – окончательное значение тепловой нагрузки, R – теплоотдача (мощность) одной секции. Итоговая цифра:

K = 3926/180 = 21,8 (округленная 22)

Итак, чтобы обеспечить оптимальный расход тепла на отопление, необходимо поставить радиаторы, имеющие в сумме 22 секции. Нужно учитывать, что самая низкая температура – 30 градусов мороза по времени составляет максимум 2-3 недели, поэтому можно смело уменьшить число до 17 секций (- 25%).

Если хозяев жилья не устраивает такой показатель количества радиаторов, то следует изначально брать во внимание батареи, имеющие большую мощность теплоснабжения. Либо утеплять стены здания и внутри, и снаружи современными материалами. Кроме того, нужно правильно оценить потребности жилья в тепле, исходя из второстепенных параметров.

Существует еще несколько параметров, влияющих на дополнительный расход энергии впустую, что влечет за собой увеличение тепловой потери:

  1. Особенности наружных стен. Энергии обогрева должно хватить не только для отопления помещения, но и для компенсации потерь тепла. Стена, контактирующая с окружающей средой, со временем от перепадов температуры наружного воздуха начинает пропускать внутрь влагу. Особенно следует хорошо утеплить и провести качественную гидроизоляцию для северных направлений. Также рекомендуется изолировать поверхность домов, находящихся во влажных регионах. Высокий годовой уровень осадков неизбежно приведет к повышению теплопотерь.
  2. Место установки радиаторов. Если батарея монтирована под окном, то происходит утечка энергии обогрева через его конструкцию. Уменьшить потери тепла поможет установка качественных блоков. Также нужно рассчитывать мощность прибора, установленного в подоконной нише – она должна быть выше.
  3. Условность годовой потребности тепла для зданий в разных часовых поясах. Как правило, по СНИПам рассчитывается усредненная температура (усредненный годовой показатель) для зданий. Однако потребности в тепле бывают существенно ниже, если, например, на холодную погоду и низким показателям наружного воздуха приходится в общей сложности 1 месяц в году.

Совет! Чтобы максимально снизить потребности в тепле зимой, рекомендуется установить дополнительные источники обогрева воздуха внутри помещения: кондиционеры, передвижные обогреватели и пр.

ВВЕДЕНИЕ

Потребление тепловой энергии в России, как и во всем мире неуклонно возрастает для обеспечения инженерных систем здания и сооружений.

В данном курсовом проекте рассчитывается план застройки микрорайона города, где потребители тепловой энергии являются четыре жилых здания и одно общественное – общежитие. Данная тепловая сеть должна обеспечивать расход, необходимый для отопления и горячего водоснабжения всех зданий. Здание 2 – жилой трёхэтажный дом (он вмещает 135 человек), здание 3,4 – жилой пятиэтажный дом (он вмещает 300 человек), здание 5 – общественное здание –детский сад (он вмещает 150 человек), здание1– жилой четырехэтажный дом (он вмещает 180 человек).

Источником тепловой энергии является центральный тепловой пункт. В связи с массовым жилищным строительством возникла необходимость сооружения укрупненных, Центральных тепловых пунктов, для которых отводились специальные земельные участки, как правило, в центре жилых микрорайонов. В закрытых системах теплоснабжения тепловую мощность такого центрального теплового пункта на микрорайон или группу зданий рекомендуется принимать от 12 до 35 МВт (по сумме теплового потока на отопление и среднечасового потока на горячее водоснабжение). Системы горячего водоснабжения при закрытой системе теплоснабжения присоединяют через скоростные секционные водяные подогреватели. Каждый из них состоит из нескольких последовательно включенных секций, в которых происходит противоток сетевой и водопроводной воды. Для возможности очистки трубок от накипи и загрязнений нагреваемая водопроводная вода подается в трубки, а сетевая протекает в межтрубном пространстве.

Данную тепловую сеть можно охарактеризовать следующим образом. Тепловая сеть включает в себя снабжение тепловой энергией на отопление и горячее водоснабжение зданий.

Теплотрасса сети имеет закрытую независимую четырех трубную систему, которая состоит из трубопроводов отопления: обратного и подающего, а также трубопроводов водоснабжения горячего и циркуляционного.

Температура воды в подающем трубопроводе отопления: 130 о С , обратном – 70 о С .

Температура воды в трубопроводах горячего и холодного водоснабжения 65 о С и 5 о С. Теплосеть обеспечивает тепловой энергией пять зданий на их отопление и горячее водоснабжение.

Траса теплосети проложена в местности города Ижевска, рельеф которой повышается по направлению от источника тепловой энергии к последнему потребителю. Источником тепловой энергии тепловой сети является центральный тепловой пункт (ЦТП). Трасса имеет четырех трубную систему, которая состоит из трубопроводов отопления (подающего и обратного) и трубопроводов водоснабжения (горячего и циркуляционного)

Теплосеть обеспечивает тепловой энергией пять зданий на их отопление, вентиляцию и горячее водоснабжение.

Расчетная схема тепловой сети


Исходные параметры зданий

РАСЧЕТ РАСХОДОВ ТЕПЛОТЫ

Для расчета сетей теплоснабжения необходимо разработать расчетные схемы. Разрабатываются отдельные расчетные схемы на горячее водоснабжение и отопление, так как количество узловых точек в этих сетях не всегда совпадает. Разработку расчетных схем начинаю с определения количества секционных узлов системы горячего водоснабжения и местных тепловых пунктов системы отопления.

Количество секционных узлов горячего водоснабжения в здании либо по числу секций в здании, либо из расчета 36 квартир (ориентировочно) на один секционный узел, каждый секционный узел и каждый тепловой пункт нумеруется. Все секционные узлы соединятся между собой распределительными трубопроводами. На полученной сети расставляются узловые точки, в которых происходит разветвление потока теплоносителя. Все узловые точки нумеруются. Участки между узловыми точками являются расчетными участками. Расходы на участках между секционными узлами в зданиях и на вводах в здания определяются расчётом. Расходы на участках распределительных трубопроводов определяются суммированием расходов воды на участках, подходящих к узлу ветвления потока.

Расход теплоты на отопление

В курсовом проекте лучше всего воспользоваться методом приближённого определения расходов теплоты на отопление и вентиляцию жилых и общественных зданий по их тепловым характеристикам.
Приближённый расход теплоты на отопление жилых и общественных зданий определяют по формуле максимального часового расхода тепла:

где - максимальный часовой расход тепла на отопление здания, Вт;

Тепловая характеристика здания, Вт/(); принимается по таблице в методическом пособии;

a – коэффициент, учитывающий расход тепла на подогрев наружного воздуха, поступающего в здания путем инфильтрации через неплотности в ограждениях; принимают в расчетах a= (1.05…1.1);

К – поправочный коэффициент, учитывающий изменение расчетной наружной температуры; принимается по таблице в методическом пособии;

Объем здания по наружному обмеру, ;

Средняя температура воздуха в здании, ; принимается по нормативам;

- расчетная температура наружного воздуха для проектирования отопления, ; для Удмуртии .

Для 3-х этажного здания:

Для 4-х этажного здания:

Для 5-ти этажного здания:

Для 5-ти этажного здания:

Детский сад 2 этажа:

1.2Расход теплоты на вентиляцию
Значения расходов теплоты на вентиляцию для общественных зданий определяются по формуле:
(1.2)

где - расход теплоты на вентиляцию общественных зданий, Вт;

- вентиляционная удельная тепловая характеристика, Вт/( ); принимается по данным таблиц;

Объём здания по внешнему обмеру,

- температура внутреннего воздуха в здании, ; принимается для определенного здания по нормативам;

Расчётная температура наружного воздуха для проектирования вентиляции, ; для Удмуртии принимается ;

- поправка на расчётную температуру наружного воздуха, принимается по данным таблицы методического материала.

Для общественного здания:

1.3 Расход теплоты на горячее водоснабжение
Расход теплоты на горячее на горячее водоснабжение жилых и общественных зданий определяется по изменению энтальпии воды:

где - максимальный расход теплоты на горячее водоснабжение, Вт;

с - теплоёмкость воды; с = 4,187 кДж / (кг х ;);

- плотность воды; - 983.2 кг / м3:

- секундный расход горячей воды, л/с;

- температура горячей воды;

- температура холодной воды, .

Расчет расхода теплоты на отопление . Показатель зависит от времени суток, назначения помещения и типа здания, температуры наружного воздуха, продолжительности отопительного периода, наличия в помещении нагретых поверхностей и пр.

Расход теплоты в рабочее время (МДж/ч) рассчитывают по удельным тепловым характеристикам:

В зависимости от времени суток расход теплоты на отопление (МДж/ч) промышленных предприятий определяют по формуле

Температура воздуха в помещении в рабочее время должна соответствовать рекомендациям по эксплуатации вентиляционных установок.

Часовой расход теплоты в нерабочее время определяют по формуле, используемой при расчете расхода теплоты в рабочее время, с учетом снижения температуры воздуха в помещении в нерабочее время до 5 °С.

Удельная тепловая характеристика зависит от назначения помещения и типа здания. Например, для производственных помещений, расположенных в одноэтажном корпусе, q 0 составляет 0,75—2,1 МДж/(м 3 . ч. К); для производственных помещений, расположенных в многоэтажном здании, — 0,20 — 1,05 кДжДм 3 . ч. К); для бытовых и вспомогательных помещений — 1,4 —2,5 кДжДм 3 -ч-К); для складов — 2,50 — 3,35 кДжДм 3 -ч. К); для административных зданий — 1,7 — 2,6 кДжДм 3 . ч. К).

Поправочный коэффициент а зависит от температуры наружного воздуха. Так, для общественных зданий при t H 0 = -10° С а = = 1,45; при t H 0 = -20 °С а = 1,17 и т.д.

в нерабочее время

В зависимости от наличия в помещении нагретых поверхностей поступление теплоты (МДж) рассчитывают по следующим формулам:

от нагретых поверхностей оборудования

от нагретого материала

от электропривода

В зависимости от отопительного периода расход теплоты (МДж) рассчитывают по следующим формулам: в рабочее время

Система отопления промышленных предприятий должна обеспечивать тепловой баланс между количеством теплоты, покупаемой от нагретых поверхностей технологического оборудования, нагретого материала, людей и т.д., и количеством тепловых потерь через наружные ограждения зданий.

от работающих людей

Тепловые потери через строительные ограждения помещений складываются из тепловых потерь через стены здания, покрытие, дверные и оконные проемы.

Перенос теплоты Q через стены здания и оконные проемы протекает в три стадии: от воздуха в помещении к внутренней поверхности стен зданий Q h через стены здания Q 2 и от наружной поверхности стен в окружающую среду Q 3 .

Количество теплоты, теряемой через стены здания, рассчитывают по формуле

Приближенно тепловые потери (кДж/ч) помещений определяют по формуле

Если производственный корпус имеет много окон, то целесообразно учитывать дополнительный расход теплоты на отопление исходя из тепловых потерь оконных проемов в отопительный период.

Расчет проводят по формуле

В случае если стена не аккумулирует теплоту, можно считать, что

где К — коэффициент теплопередачи, зависящий от типа остекления; F 0 K — площадь окон, м 2 ; п 0 — число дней отопительного периода; т — время работы, ч; / вн р — температура внутри здания в рабочее время, °С; *н.ср — средняя температура отопительного периода, °С.

В зависимости от типа остекления зданий коэффициент теплопередачи может иметь следующие значения, кДж/(м 2 - К): однослойное остекление — 4,5; двухслойное остекление с деревянными спаренными оконными переплетами — 2,9; двухслойное остекление с металлическими спаренными переплетами — 3,25; двухслойное остекление с деревянными раздельными переплетами — 2,67; двухслойное остекление с металлическими раздельными переплетами — 3,02.

1.1.1.Расчетные максимального расхода теплоты (Вт) на отопление жилых, общественных и административных зданий определяют по укрупненным показателям

= q o ∙ V (t в t н.р.),

=1.07∙0.38∙19008(16-(-25))=239588.2

Где q о  удельная отопительная характеристика здания при t н.р. = 25С (Вт/м  С);

  поправочный коэффициент, учитывающий климатические условия района и применяемый в тех случаях, когда расчетная температура наружного воздуха, отличается от  25С, V объем здания по наружному обмеру, м 3 ; t в расчетная температура воздуха внутри отапливаемого здания, t н.р.  расчетная температура наружного воздуха для проектирования отопления, С, см. Прилож.2.

Расчет производился для абонента-№1школы. Для всех остальных расчет производился по выше предложенной формуле, результаты занесены в таблицу 2.2.

      1.1.2.Средний тепловой поток (Вт) на отопление



Расчет производился для абонента-№1школы. Для всех остальных расчет производился по выше предложенной формуле, результаты занесены в таблицу 2.2.

Где t н.р.ср.  расчетная средняя температура наружного воздуха для проектирования отопления, С (приложение 2).

1.2.Определение расхода теплоты на вентиляцию.

1.2.1Максимальный расход теплоты на вентиляцию, Q в max , Вт

Q в max = q в  V   (t в  t н.в.)

Q в max =1,07190080,29(16-(-14))

Где q в  удельная характеристика здания для проектирования системы вентиляции.

1.2.2.Средний расход теплоты на вентиляцию, Q в ср, Вт

Q в ср = Q в max 

Q в ср =176945,5 

Расчет производился для абонента-№1школы. Для всех остальных расчет производился по выше предложенной формуле, результаты занесены в таблицу 2.2.

1.3. Определение расхода теплоты на горячее водоснабжение.

1.3.1 Средний расход тепла на горячее водоснабжение промышленных зданий, Q ср г.в.с., Вт

Q г.в.с. ср =

где   норма расхода горячей воды (л/сут) на единицу измерения (СниП 2.04.01.85),

m  количество единиц измерений;

c  теплоемкость воды С = 4187 Дж/кг  С;

t г, t х  температура горячей воды, соответственно подаваемой в систему горячего водоснабжения и холодной воды, С;

h  расчетная длительность подачи тепла на горячее водоснабжение, С/сутки, ч/сутки.

1.3.2 Средний расход теплоты на горячее водоснабжение жилых и общественных зданий, Q г.в.с., Вт

Расчет производился для абонента-№1школы. Для всех остальных расчет производился по выше предложенной формуле, результаты занесены в таблицу 2.2.

где m  число человек,

  норма расхода воды на г.в.с. при температуре 55 С на одного человека в сутки (СНиП 2.04.0185, приложение3)

в  норма расхода воды на горячее водоснабжение принимаемая 25 л/сутки на 1 человека;

t х  температура холодной воды (водопроводной) в отопительный период (при отсутствии данных принимается равной 5С)

с  теплоемкость воды, С = 4,187 кДж/(кгС)

1.3.3.Максимальный расход теплоты на горячее водоснабжение,
,Вт

134332,9

Расчет производился для абонента-№1школы. Для всех остальных расчет производился по выше предложенной формуле, результаты занесены в таблицу 2.2.

Таблица 2.1

Наименование потребителей

Объем, V, тыс.м 3

Колво проживающих m, человек

Удельная характеристика здания, Вт/м С

Норма расхода горячей воды, а, л/сут.

3. Котельная

4. Общага

5. 9 этажный дом 1

6. 9 этажный дом 2

7. Аптека

8. Поликлиника

Температура внутри помещения, t в

Расчетная температура

Расход теплоты

Суммарный расход теплоты, Q, Вт.

для отоп ления

для вентиляции

на отопление

на вентиляцию

1. Школа +16

2.Дет. сад +20

3. Котельная +16

4. Общага +18

5. 9 этажный дом 1 +18

6. 9 этажный дом 2 +18

7. Аптека +15

8. Поликлиника +20

1.3.4. Годовые расходы тепла жилыми и общественными зданиями

а) На отопление

;

б) На вентиляцию

;

в) На горячее водоснабжение

где n о, n r – соответственно продолжительность отопительного периода и длительность работы системы горячего водоснабжения в сек/год, (час/год).

Обычно n r = 30,2·10 5 с-год (8400ч/год);

t r – температура горячей воды.

г) Суммарный годовой расход тепла на отопление, вентиляцию и горячее водоснабжение