Оценки математического ожидания дисперсии случайной величины. Точечные оценки математического ожидания и дисперсии

Пусть имеется случайная величина Х с математическим ожиданием m и дисперсией D , при этом оба эти параметра неизвестны. Над величиной Х произведено N независимых экспериментов, в результате которых была получена совокупность N численных результатов x 1 , x 2 , …, x N . В качестве оценки математического ожидания естественно предложить среднее арифметическое наблюдаемых значений

(1)

Здесь в качестве x i рассматриваются конкретные значения (числа), полученные в результате N экспериментов. Если взять другие (независимые от предыдущих) N экспериментов, то, очевидно, мы получим другое значение . Если взять еще N экспериментов, то мы получим еще одно новое значение . Обозначим через X i случайную величину, являющуюся результатом i -го эксперимента, тогда реализациями X i будут числа, полученные в результате этих экспериментов. Очевидно, что случайная величина X i будет иметь такую же плотность распределения вероятности, что и исходная случайная величина Х . Также считаем, что случайные величины X i и X j являются независимыми при i , не равном j (различные независимые друг относительно друга эксперименты). Поэтому формулу (1) перепишем в другом (статистическом) виде:

(2)

Покажем, что оценка является несмещенной:

Таким образом, математическое ожидание выборочного среднего равно истинному математическому ожиданию случайной величины m . Это достаточно предсказуемый и понятный факт. Следовательно, за оценку математического ожидания случайной величины можно принять выборочное среднее (2). Теперь возникает вопрос: что происходит с дисперсией оценки математического ожидания при увеличении числа экспериментов? Аналитические вычисления показывают, что

где - дисперсия оценки математического ожидания (2), а D - истинная дисперсия случайной величины X .

Из вышесказанного следует, что с ростом N (количества экспериментов) дисперсия оценки уменьшается, т.е. чем больше мы суммируем независимые реализации, тем ближе к математическому ожиданию мы получим оценку.


Оценки математического дисперсии

На первый взгляд наиболее естественной оценкой представляется

(3)

где вычисляется по формуле (2). Проверим, является ли оценка несмещенной. Формула (3) может быть записана следующим образом :

Подставим в эту формулу выражение (2):

Найдем математическое ожидание оценки дисперсии:

(4)

Так как дисперсия случайной величины не зависит от того, какое математическое ожидание у случайной величины, примем математическое ожидание равным 0, т.е. m = 0.

(5)
при . (6)

Пусть случайная выборка порождена наблюдаемой случайной величиной ξ, математическое ожидание и дисперсия которой неизвестны. В качестве оценок для этих характеристик было предложено использовать выборочное среднее

и выборочную дисперсию

. (3.14)

Рассмотрим некоторые свойства оценок математического ожидания и дисперсии.

1. Вычислим математическое ожидание выборочного среднего:

Следовательно, выборочное среднее является несмещенной оценкой для .

2. Напомним, что результаты наблюдений – независимые случайные величины, каждая из которых имеет такой же закон распределения, как и величина , а значит, , , . Будем предполагать, что дисперсия конечна. Тогда, согласно теореме Чебышева о законе больших чисел, для любого ε > 0 имеет место равенство ,

которое можно записать так: . (3.16) Сравнивая (3.16) с определением свойства состоятельности (3.11), видим, что оценка является состоятельной оценкой математического ожидания .

3. Найдем дисперсию выборочного среднего:

. (3.17)

Таким образом, дисперсия оценки математического ожидания уменьшается обратно пропорционально объему выборки.

Можно доказать, что если случайная величина ξ распределена нормально, то выборочное среднее является эффективной оценкой математического ожидания , то есть дисперсия принимает наименьшее значение по сравнению с любой другой оценкой математического ожидания. Для других законов распределения ξ это может быть и не так.

Выборочная дисперсия является смещенной оценкой дисперсии , так как . (3.18)

Действительно, используя свойства математического ожидания и формулу (3.17), найдем

.

Чтобы получить несмещенную оценку дисперсии, оценку (3.14) нужно исправить, то есть домножить на . Тогда получим несмещенную выборочную дисперсию

. (3.19)

Отметим, что формулы (3.14) и (3.19) отличаются лишь знаменателем, и при больших значениях выборочная и несмещенная дисперсии отличаются мало. Однако при малом объеме выборки следует пользоваться соотношением (3.19).

Для оценки среднего квадратического отклонения случайной величины используют так называемое “исправленное” среднее квадратическое отклонение, которое равно квадратному корню из несмещенной дисперсии: .

Интервальные оценки

В статистике имеются два подхода к оцениванию неизвестных параметров распределений: точечный и интервальный. В соответствии с точечным оцениванием, которое рассмотрено в предыдущем разделе, указывается лишь точка, около которой находится оцениваемый параметр. Желательно, однако, знать, как далеко может отстоять в действительности этот параметр от возможных реализаций оценок в разных сериях наблюдений.

Ответ на этот вопрос – тоже приближенный – дает другой способ оценивания параметров – интервальный. В соответствии с этим способом оценивания находят интервал, который с вероятностью, близкой к единице, накрывает неизвестное числовое значение параметра.

Понятие интервальной оценки

Точечная оценка является случайной величиной и для возможных реализаций выборки принимает значения лишь приближенно равные истинному значению параметра . Чем меньше разность , тем точнее оценка. Таким образом, положительное число , для которого , характеризует точность оценки и называется ошибкой оценки (или предельной ошибкой).

Доверительной вероятностью (или надежностью) называется вероятность β , с которой осуществляется неравенство , т. е.

. (3.20)

Заменив неравенство равносильным ему двойным неравенством , или , получим

Интервал , накрывающий с вероятностью β , , неизвестный параметр , называется доверительным интервалом (или интервальной оценкой), соответствующим доверительной вероятности β .

Случайной величиной является не только оценка , но и ошибка : ее значение зависит от вероятности β и, как правило, от выборки. Поэтому доверительный интервал случаен и выражение (3.21) следует читать так: “Интервал накроет параметр с вероятностью β ”, а не так: “Параметр попадет в интервал с вероятностью β ”.

Смысл доверительного интервала состоит в том, что при многократном повторении выборки объема в относительной доле случаев, равной β , доверительный интервал, соответствующий доверительной вероятности β , накрывает истинное значение оцениваемого параметра. Таким образом, доверительная вероятность β характеризует надежность доверительного оценивания: чем больше β , тем вероятнее, что реализация доверительного интервала содержит неизвестный параметр.

Параметры распределения и статистика

Любые параметры распределения случайной переменной, например, такие как математическое ожидание или дисперсия, являются теоретическими величинами, недоступными непосредственному измерению, хотя их и можно оценить. Они представляют собой количественную характеристику генеральной совокупности и могут быть сами по себе определены лишь в ходе теоретического моделирования как гипотетические величины, поскольку они описывают особенности распределения случайной величины в самой генеральной совокупности. Для того чтобы определить их на практике, исследователь, проводящий эксперимент, осуществляет их выборочную оценку. Такая оценка предполагает статистический подсчет.

Статистика представляет собой количественную характеристику исследуемых параметров, характеризующих распределение случайной величины, полученную на основе исследования выборочных значений. Статистика используется либо для описания самой выборки, либо, что имеет первостепенное значение в фундаментальных экспериментальных исследованиях, для оценки параметров распределения случайной величины в исследуемой генеральной совокупности.

Разделение понятий "параметр " и "статистика " является очень важным, так как оно позволяет избежать ряд ошибок, связанных с неверным толкованием данных, получаемых в эксперименте. Дело в том, что, когда мы оцениваем параметры распределения с помощью статистических данных, мы получаем величины, лишь в определенной степени близкие к оцениваемым параметрам. Между параметрами и статистикой практически всегда существует какое-то различие, причем, насколько велико это различие, мы, как правило, сказать не можем. Теоретически чем больше выборка, тем ближе оцениваемые параметры оказываются к их выборочным характеристикам. Однако это не означает, что, увеличив объем выборки, мы неминуемо ближе подойдем к оцениваемому параметру, уменьшим разницу между ним и вычисленной статистикой. На практике все может оказаться значительно сложнее.

Если в теории ожидаемое значение статистики совпадает с оцениваемым параметром, то такую оценку называют несмещенной. Оценку, при которой ожидаемое значение оцениваемого параметра отличается от самого параметра на некоторую величину, называют смещенной.

Также следует различать точечную и интервальную оценки параметров распределения. Точечной называют оценку с помощью какого-либо числа. Например, если мы утверждаем, что величина пространственного порога тактильной чувствительности для данного испытуемого в данных условиях и на данном участке кожи составляет 21,8 мм, то такая оценка будет точечной. Точно так же точечная оценка имеет место, когда в сводке погоды нам сообщают, что за окном 25°С. Интервальная оценка предполагает использование в оценке набора или диапазона чисел. Оценивая пространственный порог тактильной чувствительности, мы может сказать, что он оказался в диапазоне от 20 до 25 мм. Аналогичным образом синоптики могут сообщить, что по их прогнозам температура воздуха в ближайшие сутки достигнет значения 22–24°С. Интервальная оценка случайной величины позволяет нам не только определить искомое значение этой величины, но и задать возможную точность для такой оценки.

Математическое ожидание и его оценка

Вернемся к нашему опыту с подбрасыванием монеты.

Попытаемся ответить на вопрос: сколько раз должен выпасть "орел", если мы подбросим монету десять раз? Ответ, по-видимому, очевиден. Если вероятности каждого из двух исходов равны, то и сами исходы должны распределяться равным образом. Иными словами, при десятикратном подбрасывании обычной монеты мы вправе ожидать, что одна из ее сторон, например "орел", выпадет ровно пять раз. Аналогично при 100-кратном бросании монеты "орел" должен выпасть ровно 50 раз, а если монету бросить 4236 раз, то интересующая нас сторона должна появиться 2118 раз, не больше и не меньше.

Итак, теоретическое значение случайного события принято называть математическим ожиданием . Математическое ожидание может быть найдено путем умножения теоретической вероятности случайной величины на число испытаний. Более формально, однако, оно определяется как центральный момент первого порядка. Таким образом, математическое ожидание – это то значение случайной величины, к которому оно теоретически стремится при повторных испытаниях, относительно которого оно варьирует.

Ясно, что теоретическое значение математического ожидания как параметра распределения не всегда оказывается равным эмпирическому значению интересующей нас случайной величины, выраженной в статистике. Если мы проделаем опыт с подбрасыванием монеты, то вполне вероятно, что из десяти исходов "орел" выпадет лишь четыре или три раза, а может быть, напротив, он выпадет восемь раз, а может, и никогда не выпадет. Ясно, что какой-то из этих исходов оказывается более, какой-то менее вероятным. Если воспользоваться законом нормального распределения, то можно прийти к выводу, что чем больше результат отклоняется от теоретически ожидаемого, заданного величиной математического ожидания, тем он менее вероятен на практике.

Предположим далее, что мы проделали подобную процедуру несколько раз и ни разу не наблюдали теоретически ожидаемого значения. Тогда у нас может возникнуть сомнение относительно подлинности монеты. Мы можем предположить, что для нашей монеты вероятность выпадения "орла" на самом деле не равна 50%. В таком случае может понадобиться оценить величину вероятности этого события и соответственно величину математического ожидания. Такая необходимость возникает всякий раз, когда в эксперименте мы исследуем распределение непрерывной случайной величины, такой как время реакции, не имея заранее какой-либо теоретической модели. Как правило, это первый обязательный шаг в ходе количественной обработки результатов эксперимента.

Математическое ожидание можно оценить тремя способами, которые на практике могут дать несколько различные результаты, но в теории они должны непременно привести нас к величине математического ожидания.

Логику такой оценки иллюстрирует рис. 1.2. Математическое ожидание может быть рассмотрено как центральная тенденция в распределении случайной величины х, как наиболее вероятное и потому наиболее часто встречающееся ее значение и как точка, делящая распределение на две равные части.

Рис. 1.2.

Продолжим наши воображаемые опыты с монетой и проведем три эксперимента с десятикратным ее подбрасыванием. Предположим, что в первом эксперименте "орел" выпал четыре раза, то же самое произошло и во втором опыте, в третьем опыте "орел" выпадал более чем в полтора раза чаще – семь раз. Логично предположить, что математическое ожидание интересующего нас события на самом деле лежит где-то между этими величинами.

Первый , простейший способ оценки математического ожидания будет состоять в нахождении среднего арифметического. Тогда оценка математического ожидания на основе приведенных выше трех измерений будет равна (4 + 4 + 7)/3 = 5. Аналогичным образом в экспериментах со временем реакции математическое ожидание может быть оценено путем вычисления среднего арифметического всех полученных значений х. Так, если мы провели п замеров времени реакции х, то можем воспользоваться следующей формулой, которая показывает нам, что для вычисления среднего арифметического значения X необходимо сложить все эмпирически полученные величины и разделить их на число наблюдений:

В формуле (1.2) меру математического ожидания принято обозначать как ̅х (читается как "икс с чертой"), хотя иногда она может обозначаться как М (от англ. mean – среднее).

Среднее арифметическое является наиболее часто используемой оценкой математического ожидания. В таких случаях предполагается, что измерения случайной величины осуществляется в метрической шкале. Ясно, что полученный результат может совпадать, а может и не совпадать с истинным значением математического ожидания, которое нам никогда не известно. Важно, однако, что такой способ является несмещенной оценкой математического ожидания. Это значит, что ожидаемое значение оцениваемой величины равно ее математическому ожиданию: .

Второй способ оценки математического ожидания состоит в том, чтобы за его величину принять наиболее часто встречающееся значение интересующей нас переменной. Это значение называется модой распределения. Например, в рассмотренном только что случае с подбрасыванием монеты за величину математического ожидания можно принять "четыре", так как в трех проведенных испытаниях эта величина появлялась дважды; именно поэтому мода распределения в этом случае оказалась равной четырем. Оценка моды применяется главным образом в том случае, когда экспериментатор имеет дело с переменными, принимающими дискретные значения, заданные в неметрической шкале.

Например, описывая распределение оценок студентов на экзамене, можно построить частотное распределение полученных студентами оценок. Такое частотное распределение называется гистограммой. За величину центральной тенденции (математического ожидания) в этом случае можно принять наиболее распространенную оценку. При исследовании переменных, характеризующихся непрерывными значениями, эта мера практически не применяется или применяется редко. Если же частотное распределение полученных результатов все-таки строится, то оно, как правило, касается не самих полученных в эксперименте значений исследуемого признака, а некоторых интервалов его проявления. Скажем, исследуя рост людей, можно посмотреть, сколько человек попадает в интервал до 150 см роста, сколько в интервал от 150 до 155 см и т.д. В этом случае мода будут иметь отношение к интервальным значениям исследуемого признака, в данном случае – роста.

Понятно, что мода, как и среднее арифметическое, может совпадать, а может и не совпадать с действительным значением математического ожидания. Но так же, как и среднее арифметическое, мода является несмещенной оценкой математического ожидания.

Добавим, что если два значения в выборке встречаются одинаково часто, то такое распределение называют бимодальным. Если три и больше значений в выборке встречаются одинаково часто, то говорят, что такая выборка не имеет моды. Такие случаи при достаточно большом числе наблюдений, как правило, свидетельствуют о том, что данные извлечены из генеральной совокупности, характер распределения в которой отличается от нормального.

Наконец, третий способ оценки математического ожидания состоит в том, чтобы поделить выборку испытуемых по интересующему нас параметру ровно пополам. Величина, характеризующая эту границу, называется медианой распределения.

Предположим, мы присутствуем на лыжных соревнованиях и после их окончания желаем оценить, кто из спортсменов показал результат выше среднего, а кто – ниже. Если состав участников более или менее ровный, то при оценке среднего результата логично вычислить среднее арифметическое. Предположим, однако, что среди участников-профессионалов есть несколько любителей. Их немного, но они показывают результаты, значительно уступающие остальным. В этом случае может оказаться, что из 100 участников соревнований, например, результат выше среднего показали 87. Ясно, что такая оценка средней тенденции нас нс всегда может устроить. В этом случае логично предполагать, что средний результат показали участники, занявшие где-то 50-е или 51-е место. Это как раз и будет медианой распределения. До 50-го финалиста финишировали 49 участников, после 51-го – тоже 49. Непонятно, правда, чей же результат из них принять за средний. Конечно, может оказаться, что они финишировали с одинаковым временем. Тогда проблемы не возникает. Не возникает проблемы и тогда, когда число наблюдений оказывается нечетным. В других случаях, однако, можно воспользоваться усреднением результатов двух участников.

Медиана представляет собой частный случай квантиля распределения. Квантиль – это часть распределения. Формально его можно определить как интегральное значение распределения между двумя величинами переменной X. Таким образом, величина X будет являться медианой распределения, если интегральное значение распределения (плотность вероятности) от -∞ до X равно интегральному значению распределения от X до +∞. Аналогичным образом распределение можно делить на четыре, десять или 100 частей. Такие квантили соответственно называются квартилями, децилями и перцентилями. Существуют и другие виды квантилей.

Так же, как и два предыдущих способа оценки математического ожидания, медиана является несмещенной оценкой математического ожидания.

Теоретически предполагается, что если мы имеем дело действительно с нормальным распределением случайной величины, то все три оценки математического ожидания должны давать один и тот же результат, так как все они представляют собой вариант несмещенной оценки одного и того же параметра распределения оцениваемой случайной величины (см. рис. 1.2). На практике, однако, такое встречается редко. Это может быть связано, в частности, и с тем, что анализируемое распределение отличается от нормального. Но основная причина таких несовпадений, как правило, состоит в том, что, оценивая величину математического ожидания, можно получить значение, весьма значительно отличающееся от его истинной величины. Впрочем, как уже было отмечено выше, в математической статистике доказано, что чем больше независимых испытаний рассматриваемой переменной проведено, тем ближе оцениваемое значение должно оказаться к истинному.

Таким образом, на практике выбор способа оценки математического ожидания определяется не стремлением получить более точную и надежную оценку этого параметра, а лишь соображениями удобства. Также определенную роль в выборе способа оценки математического ожидания играет измерительная шкала, в которой отражаются сами наблюдения оцениваемой случайной величины.

ЦЕЛЬ ЛЕКЦИИ: ввести понятие оценки неизвестного параметра распределения и дать классификацию таких оценок; получить точечные и интервальные оценки математического ожидания и дисперсии.

На практике в большинстве случаев закон распределения случайной величины неизвестен, и по результатам наблюдений
необходимо оценить числовые характеристики (например, математическое ожидание, дисперсию или другие моменты) или неизвестный параметр, который определяет закон распределения (плотность распределения)
изучаемой случайной величины. Так, для показательного распределения или распределения Пуассона достаточно оценить один параметр, а для нормального распределения подлежат оценке уже два параметра – математическое ожидание и дисперсия.

Виды оценок

Случайная величина
имеет плотность вероятности
, где– неизвестный параметр распределения. В результате эксперимента получены значения этой случайной величины:
. Произвести оценку по существу означает, что выборочным значениям случайной величины необходимо поставить в соответствие некоторое значение параметра, т. е. создать некоторую функцию результатов наблюдений
, значение которой принимается за оценкупараметра. Индексуказывает на количество проведенных опытов.

Любая функция, зависящая от результатов наблюдений, называется статистикой . Так как результаты наблюдений являются случайными величинами, то и статистика тоже будет случайной величиной. Следовательно, оценку
неизвестного параметраследует рассматривать как случайную величину, а ее значение, вычисленное по экспериментальным данным объемом, – как одно из возможных значений этой случайной величины.

Оценки параметров распределений (числовых характеристик случайной величины) подразделяются на точечные и интервальные. Точечная оценка параметраопределяется одним числом, и ее точность характеризуется дисперсией оценки.Интервальной оценкой называют оценку, которая определяется двумя числами,и– концами интервала, накрывающего оцениваемый параметрс заданной доверительной вероятностью.

Классификация точечных оценок

Чтобы точечная оценка неизвестного параметра
была наилучшей с точки зрения точности, необходимо, чтобы она была состоятельной, несмещенной и эффективной.

Состоятельной называется оценка
параметра, если она сходится по вероятности к оцениваемому параметру, т. е.

. (8.8)

На основании неравенства Чебышева можно показать, что достаточным условием выполнения соотношения (8.8) является равенство

.

Состоятельность является асимптотической характеристикой оценки при
.

Несмещенной называется оценка
(оценка без систематической ошибки), математическое ожидание которой равно оцениваемому параметру, т. е.

. (8.9)

Если равенство (8.9) не выполняется, то оценка называется смещенной. Разность
называется смещением или систематической ошибкой оценки. Если же равенство (8.9) выполняется лишь при
, то соответствующая оценка называется асимптотически несмещенной.

Необходимо отметить, что если состоятельность – практически обязательное условие всех используемых на практике оценок (несостоятельные оценки используются крайне редко), то свойство несмещенности является лишь желательным. Многие часто применяемые оценки свойством несмещенности не обладают.

В общем случае точность оценки некоторого параметра , полученная на основании опытных данных
, характеризуется средним квадратом ошибки

,

который можно привести к виду

,

где –дисперсия,
– квадрат смещения оценки.

Если оценка несмещенная, то

При конечных оценки могут различаться средним квадратом ошибки. Естественно, что, чем меньше эта ошибка, тем теснее группируются значения оценки около оцениваемого параметра. Поэтому всегда желательно, чтобы ошибка оценки была по возможности наименьшей, т. е. выполнялось условие

. (8.10)

Оценку , удовлетворяющую условию (8.10), называют оценкой с минимальным квадратом ошибки.

Эффективной называется оценка
, для которой средний квадрат ошибки не больше среднего квадрата ошибки любой другой оценки, т. е.

где – любая другая оценка параметра.

Известно, что дисперсия любой несмещенной оценки одного параметра удовлетворяет неравенству Крамера – Рао

,

где
– условная плотность распределения вероятностей полученных значений случайной величины при истинном значении параметра.

Таким образом, несмещенная оценка
, для которой неравенство Крамера – Рао обращается в равенство, будет эффективной, т. е. такая оценка имеет минимальную дисперсию.

Точечные оценки математического ожидания и дисперсии

Если рассматривается случайная величина
, имеющая математическое ожиданиеи дисперсию, то оба эти параметра считаются неизвестными. Поэтому над случайной величиной
производитсянезависимых опытов, которые дают результаты:
. Необходимо найти состоятельные и несмещенные оценки неизвестных параметров и.

В качестве оценок иобычно выбираются соответственно статистическое (выборочное) среднее значение и статистическая (выборочная) дисперсия:

; (8.11)

. (8.12)

Оценка математического ожидания (8.11) является состоятельной согласно закону больших чисел (теорема Чебышева):

.

Математическое ожидание случайной величины

.

Следовательно, оценка является несмещенной.

Дисперсия оценки математического ожидания:

Если случайная величина
распределена по нормальному закону, то оценкаявляется также и эффективной.

Математическое ожидание оценки дисперсии

В то же время

.

Так как
, а
, то получаем

. (8.13)

Таким образом,
– смещенная оценка, хотя является состоятельной и эффективной.

Из формулы (8.13) следует, что для получения несмещенной оценки
следует видоизменить выборочную дисперсию (8.12) следующим образом:

которая считается "лучшей" по сравнению с оценкой (8.12), хотя при больших эти оценки практически равны друг другу.

Методы получения оценок параметров распределения

Часто на практике на основании анализа физического механизма, порождающего случайную величину
, можно сделать вывод о законе распределения этой случайной величины. Однако параметры этого распределения неизвестны, и их необходимо оценить по результатам эксперимента, обычно представленных в виде конечной выборки
. Для решения такой задачи чаще всего применяются два метода: метод моментов и метод максимального правдоподобия.

Метод моментов . Метод состоит в приравнивании теоретических моментов соответствующим эмпирическим моментам того же порядка.

Эмпирические начальные моменты -го порядка определяются формулами:

,

а соответствующие им теоретические начальные моменты -го порядка – формулами:

для дискретных случайных величин,

для непрерывных случайных величин,

где – оцениваемый параметр распределения.

Для получения оценок параметров распределения, содержащего два неизвестных параметра и, составляется система из двух уравнений

где и– теоретический и эмпирический центральные моменты второго порядка.

Решением системы уравнений являются оценки инеизвестных параметров распределенияи.

Приравняв теоретический эмпирический начальные моменты первого порядка, получаем, что оценкой математического ожидания случайной величины
, имеющей произвольное распределение, будет выборочное среднее, т. е.
. Затем, приравняв теоретический и эмпирический центральные моменты второго порядка, получим, что оценка дисперсии случайной величины
, имеющей произвольное распределение, определяется формулой

.

Подобным образом можно найти оценки теоретических моментов любого порядка.

Метод моментов отличается простотой и не требует сложных вычислений, но полученные этим методом оценки часто являются неэффективными.

Метод максимального правдоподобия . Метод максимального правдоподобия точечной оценки неизвестных параметров распределения сводится к отысканию максимума функции одного или нескольких оцениваемых параметров.

Пусть
– непрерывная случайная величина, которая в результатеиспытаний приняла значения
. Для получения оценки неизвестного параметранеобходимо найти такое значение, при котором вероятность реализации полученной выборки была бы максимальной. Так как
представляют собой взаимно независимые величины с одинаковой плотностью вероятности
, тофункцией правдоподобия называют функцию аргумента :

Оценкой максимального правдоподобия параметра называется такое значение, при котором функция правдоподобия достигает максимума, т. е. является решением уравнения

,

которое явно зависит от результатов испытаний
.

Поскольку функции
и
достигают максимума при одних и тех же значениях
, то часто для упрощения расчетов используют логарифмическую функцию правдоподобия и ищут корень соответствующего уравнения

,

которое называется уравнением правдоподобия .

Если необходимо оценить несколько параметров
распределения
, то функция правдоподобия будет зависеть от этих параметров. Для нахождения оценок
параметров распределения необходимо решить системууравнений правдоподобия

.

Метод максимального правдоподобия дает состоятельные и асимптотически эффективные оценки. Однако получаемые методом максимального правдоподобия оценки бывают смещенными, и, кроме того, для нахождения оценок часто приходится решать достаточно сложные системы уравнений.

Интервальные оценки параметров

Точность точечных оценок характеризуется их дисперсией. При этом отсутствуют сведения о том, насколько близки полученные оценки истинным значениям параметров. В ряде задач требуется не только найти для параметра подходящее численное значение, но и оценить его точность и надежность. Необходимо узнать, к каким ошибкам может привести замена параметраего точечной оценкойи с какой степенью уверенности следует ожидать, что эти ошибки не выйдут за известные пределы.

Такие задачи особенно актуальны при малом числе опытов , когда точечная оценкав значительной степени случайна и приближенная заменанаможет привести к значительным ошибкам.

Более полный и надежный способ оценивания параметров распределений заключается в определении не единственного точечного значения, а интервала, который с заданной вероятностью накрывает истинное значение оцениваемого параметра.

Пусть по результатам опытов получена несмещенная оценка
параметра. Необходимо оценить возможную ошибку. Выбирается некоторая достаточно большая вероятность
(например), такая, что событие с этой вероятностью можно считать практически достоверным событием, и находится такое значение, для которого

. (8.15)

В этом случае диапазон практически возможных значений ошибки, возникающей при замене на, будет
, а большие по абсолютной величине ошибки будут появляться лишь с малой вероятностью.

Выражение (8.15) означает, что с вероятностью
неизвестное значение параметрапопадет в интервал

. (8.16)

Вероятность
называетсядоверительной вероятностью , а интервал, накрывающий с вероятностьюистинное значение параметра, называетсядоверительным интервалом . Заметим, что неправильно говорить, что значение параметра лежит внутри доверительного интервала с вероятностью. Используемая формулировка (накрывает) означает, что хотя оцениваемый параметр и неизвестен, но он имеет постоянное значение и, следовательно, не имеет разброса, поскольку это не случайная величина.

Основные свойства точечных оценок

Для того чтобы оценка имела практическую ценность, она должна обладать следующими свойствами.

1. Оценка параметра называется несмещенной, если ее математическое ожидание равно оцениваемому параметру, т.е.

Если равенство (22.1) не выполняется, то оценка может либо завышать значение (М>), либо занижать его (М <) . Естественно в качестве приближенного неизвестного параметра брать несмещенные оценки для того, чтобы не делать систематической ошибки в сторону завышения или занижения.

2. Оценка параметра называется состоятельной, если она подчиняется закону больших чисел, т.е. сходится по вероятности к оцениваемому параметру при неограниченном возрастании числа опытов (наблюдений) и, следовательно, выполняется следующее равенство:

где > 0 сколько угодно малое число.

Для выполнения (22.2) достаточно, чтобы дисперсия оценки стремилась к нулю при, т.е.

и кроме того, чтобы оценка была несмещенной. От формулы (22.3) легко перейти к (22.2) , если воспользоваться неравенством Чебышева.

Итак, состоятельность оценки означает, что при достаточно большом количестве опытов и со сколько угодно большой достоверностью отклонение оценки от истинного значения параметра меньше любой наперед заданной величины. Этим оправдано увеличение объема выборки.

Так как - случайная величина, значение которой изменяется от выборки к выборке, то меру ее рассеивания около математического ожидания будем характеризовать дисперсией D. Пусть и - две несмещенные оценки параметра, т.е. M = и M = , соответственно D и D и, если D < D , то в качестве оценки принимают.

3. Несмещенная оценка, которая имеет наименьшую дисперсию среди всех возможных несмещенных оценок параметра, вычисленных по выборкам одного и того же объема, называется эффективной оценкой.

На практике при оценке параметров не всегда удается удовлетворить одновременно требованиям 1, 2, 3. Однако выбору оценки всегда должно предшествовать ее критическое рассмотрение со всех точек зрения. При выборке практических методов обработки опытных данных необходимо руководствоваться сформулированными свойствами оценок.

Оценка математического ожидания и дисперсии по выборке

Наиболее важными характеристиками случайной величины являются математическое ожидание и дисперсия. Рассмотрим вопрос о том, какие выборочные характеристики лучше всего оценивают математическое ожидание и дисперсию в смысле несмещенности, эффективности и состоятельности.

Теорема 23.1. Арифметическая средняя, вычисленная по n независимым наблюдениям над случайной величиной, которая имеет математическое ожидание M = , является несмещенной оценкой этого параметра.

Доказательство.

Пусть - n независимых наблюдений над случайной величиной. По условию M = , а т.к. являются случайными величинами и имеют тот же закон распределения, то тогда. По определению средняя арифметическая

Рассмотрим математическое ожидание средней арифметической. Используя свойство математического ожидания, имеем:

т.е. . В силу (22.1) является несмещенной оценкой. ?

Теорема 23.2 . Арифметическая средняя, вычисленная по n независимым наблюдениям над случайной величиной, которая имеет M = и, является состоятельной оценкой этого параметра.

Доказательство.

Пусть - n независимых наблюдений над случайной величиной. Тогда в силу теоремы 23.1 имеем M = .

Для средней арифметической запишем неравенство Чебышева:

Используя свойства дисперсии 4,5 и (23.1), имеем:

т.к. по условию теоремы.

Следовательно,

Итак, дисперсия средней арифметической в n раз меньше дисперсии случайной величины. Тогда

а это значит, что является состоятельной оценкой.

Замечание : 1 . Примем без доказательства весьма важный для практики результат. Если N (a,), то несмещенная оценка математического ожидания a имеет минимальную дисперсию, равную, поэтому является эффективной оценкой параметра а. ?

Перейдем к оценке для дисперсии и проверим ее на состоятельность и несмещенность.

Теорема 23.3 . Если случайная выборка состоит из n независимых наблюдений над случайной величиной с

M = и D = , то выборочная дисперсия

не является несмещенной оценкой D - генеральной дисперсии.

Доказательство.

Пусть - n независимых наблюдений над случайной величиной. По условию и для всех. Преобразуем формулу (23.3) выборочной дисперсии:


Упростим выражение

Принимая во внимание (23.1), откуда