Какое положение молекулярно кинетической теории. Основные положения молекулярно-кинетической теории и их опытное обоснование

Молекулярно-кинетическая теория (сокращённо МКТ) - теория, возникшая в XIX веке и рассматривающая строение вещества, в основном газов, с точки зрения трёх основных приближенно верных положений:

    все тела состоят из частиц: атомов , молекул и ионов ;

    частицы находятся в непрерывном хаотическом движении (тепловом);

    частицы взаимодействуют друг с другом путём абсолютно упругих столкновений .

МКТ стала одной из самых успешных физических теорий и была подтверждена целым рядом опытных фактов. Основными доказательствами положений МКТ стали:

    Диффузия

    Броуновское движение

    Изменение агрегатных состояний вещества

На основе МКТ развит целый ряд разделов современной физики, в частности, физическая кинетика и статистическая механика . В этих разделах физики изучаются не только молекулярные (атомные или ионные) системы, находящиеся не только в «тепловом» движении, и взаимодействующие не только через абсолютно упругие столкновения. Термин же молекулярно-кинетическая теория в современной теоретической физике уже практически не используется, хотя он встречается в учебниках по курсу общей физики.

Идеальный газ - математическая модель газа , в которой предполагается, что: 1) потенциальной энергией взаимодействия молекул можно пренебречь по сравнению с их кинетической энергией ; 2) суммарный объем молекул газа пренебрежимо мал. Между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосуда абсолютно упруги , а время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями. В расширенной модели идеального газа частицы, из которого он состоит, имеют также форму в виде упругих сфер или эллипсоидов , что позволяет учитывать энергию не только поступательного, но и вращательно-колебательного движения, а также не только центральные, но и нецентральные столкновения частиц и др.

Различают классический идеальный газ (его свойства выводятся из законов классической механики и описываются статистикой Больцмана) и квантовый идеальный газ (свойства определяются законами квантовой механики, описываются статистиками Ферми - Дирака или Бозе - Эйнштейна )

Классический идеальный газ

Объём идеального газа линейно зависит от температуры при постоянном давлении

Свойства идеального газа на основе молекулярно-кинетических представлений определяются исходя из физической модели идеального газа, в которой приняты следующие допущения:

В этом случае частицы газа движутся независимо друг от друга, давление газа на стенку равно полному импульсу, переданному при столкновении частиц со стенкой в единицу времени, внутренняя энергия - сумме энергий частиц газа.

По эквивалентной формулировке идеальный газ - такой газ, который одновременно подчиняется закону Бойля - Мариотта и Гей-Люссака , то есть:

где - давление,- абсолютная температура. Свойства идеального газа описываютсяуравнением Менделеева - Клапейрона

,

где -, - масса,-молярная масса .

где -концентрация частиц , -постоянная Больцмана .

Для любого идеального газа справедливо соотношение Майера :

где -универсальная газовая постоянная , - молярнаятеплоемкость при постоянном давлении, - молярная теплоемкость при постоянном объёме.

Статистический расчет распределения скоростей молекул был выполнен Максвеллом.

Рассмотрим результат, полученный Максвеллом в виде графика.

Молекулы газа при своем движении постоянно сталкиваются. Скорость каждой молекулы при столкновении изменяется. Она может возрастать и убывать. Однако среднеквадратичная скорость остается неизменной. Это объясняется тем, что в газе, находящемся при определенной температуре, устанавливается некоторое стационарное, не меняющееся со временем распределение молекул по скоростям, которое подчиняется определенному статистическому закону. Скорость отдельной молекулы с течением времени может меняться, однако доля молекул со скоростями в некотором интервале скоростей остается неизменной.

Нельзя ставить вопрос: сколько молекул обладает определенной скоростью. Дело в том, что, хоть число молекул очень велико в любом даже малом объеме, но количество значений скорости сколь угодно велико (как чисел в последовательном ряде), и может случиться, что ни одна молекула не обладает заданной скоростью.

Рис. 3.3

Задачу о распределении молекул по скоростям следует сформулировать следующим образом. Пусть в единице объема n молекул. Какая доля молекул имеет скорости от v 1 до v 1 + Δv ? Это статистическая задача.

Основываясь на опыте Штерна, можно ожидать, что наибольшее число молекул будут иметь какую-то среднюю скорость, а доля быстрых и медленных молекул не очень велика. Необходимые измерения показали, что доля молекул , отнесенная к интервалу скорости Δv , т.е. , имеет вид, показанный на рис. 3.3. Максвелл в 1859 г. теоретически на основании теории вероятности определил эту функцию. С тех пор она называется функцией распределения молекул по скоростям или законом Максвелла.

Выведем функцию распределения молекул идеального газа по скоростям

- интервал скоростей вблизи скорости .

- число молекул, скорости которых лежат в интервале
.

- число молекул в рассматриваемом объеме.

- угол молекул, скорости которых принадлежат интервалу
.

- доля молекул в единичном интервале скоростей вблизи скорости .

- формула Максвелла.

Используя статистические методы Максвелла получим следующую формулу:

.

- масса одной молекулы,
- постоянная Больцмана.

Наивероятнейшая скорость определяется из условия
.

Решая получаем
;
.

Обозначим ч/з
.

Тогда
.

Рассчитаем долю молекул в заданном интервале скоростей вблизи заданной скорости в заданном направлении.

.

.

- доля молекул, которые имеют скорости в интервале
,
,
.

Развивая идеи Максвелла Больцман рассчитал распределение молекул по скоростям в силовом поле. В отличие от распределения Максвелла в распределении Больцмана вместо кинетической энергии молекул фигурирует сумма кинетической и потенциальной энергии.

В распределении Максвелла:
.

В распределении Больцмана:
.

В гравитационном поле

.

Для концентрации молекул идеального газа имеет место формула:

исоответственно.

- распределение Больцмана.

- концентрация молекул у поверхности Земли.

- концентрация молекул на высоте .

Теплоемкость.

Теплоемкостью тела называется физическая величина, равная отношению

,
.

Теплоемкость одного моля – молярная теплоемкость

.

Т.к.
- функция процесса
, то
.

Учитывая

;

;




.

- формула Майера.

Т.о. задача вычисления теплоемкости сводится к нахождению .

.


Для одного моля:

, отсюда
.

    Двухатомный газ (О 2 , N 2 , Cl 2 , СО и т.д.).

(модель жесткой гантели).

Полное число степеней свободы:

.

Тогда
, то

;
.

Это значит, что теплоемкость должна быть постоянной. Вместе с тем опыт говорит, что теплоемкость зависит от температуры.

При понижении температуры "замараживаются" сначала колебательные степени свободы, а затем и вращательные степени свободы.

Согласно законам квантовой механики энергия гармонического осциллятора с классической частотой может принимать только дискретный набор значений

    Многоатомные газы (H 2 O, CH 4 , C 4 H 10 O и т.д.).

;
;
;

Сравним теоретические данные с опытными.

Видно, что 2-х атомных газов равняется, но изменяется при низких температурах вопреки теории теплоемкости.

Такой ход кривой отсвидетельствует о «замораживании» степеней свободы. Наоборот при больших температурах подключаются дополнительные степени свободы эти данные ставят под сомнение теорему о равномерном распределении. Современная физика позволяет объяснить зависимость отиспользуя квантовые представления.

Квантовая статистика устранила трудности в объяснении зависимости теплоемкости газов (в частности двухатомных газов) от температуры. Согласно положениям квантовой механики, энергия вращательного движения молекул и энергия колебаний атомов могут принимать лишь дискретные значения. Если энергия теплового движения значительно меньше разности энергий соседних уровней энергии (), то при столкновении молекул вращательные и колебательные степени свободы практически не возбуждаются. Поэтому при низких температурах поведение двухатомного газа подобно поведению одноатомного. Так как разность между соседними вращательными уровнями энергии значительно меньше, чем между соседними колебательными уровнями (), то с ростом температуры сначала возбуждаются вращательные степени свободы. В результате этого возрастает теплоемкость. При дальнейшем увеличении температуры возбуждаются и колебательные степени свободы, и происходит дальнейший рост теплоемкости. А. Эйнштейн, приближенно считал, что колебания атомов кристаллической решетки независимы. Используя модель кристалла как совокупность независимо колеблющихся с одинаковой частотой гармонических осцилляторов, он создал качественную квантовую теорию теплоемкости кристаллической решетки. Эта теория впоследствии была развита Дебаем, который учел, что колебания атомов в кристаллической решетке не являются независимыми. Рассмотрев непрерывный спектр частот осцилляторов, Дебай показал, что основной вклад в среднюю энергию квантового осциллятора вносят колебания на низких частотах, соответствующих упругим волнам. Тепловое возбуждение твердого тела можно описать в виде упругих волн, распространяющихся в кристалле. Согласно корпускулярно–волновому дуализму свойств вещества, упругие волны в кристалле сопоставляют сквазичастицами–фононами , обладающими энергией .Фонон – квант энергии упругой волны, являющийся элементарным возбуждением, ведущим себя подобно микрочастице. Как квантование электромагнитного излучения привело к представлению о фотонах, так квантование упругих волн (как результата теплового колебания молекул твердых тел) привело к представлению о фононах. Энергия кристаллической решетки складывается из энергии фононного газа. Квазичастицы (в частности фононы) сильно отличаются от обычных микрочастиц (электронов, протонов, нейтронов и т.д.), так как они связаны с коллективным движением многих частиц системы.

    Фононы не могут возникать в вакууме, они существуют только в кристалле.

    Импульс фонона обладает своеобразным свойством: при столкновении фононов в кристалле их импульс может дискретными порциями передаваться кристаллической решетке – импульс при этом не сохраняется. Поэтому в случае фононов говорят о квазиимпульсе.

    Фононы имеют спин, равный нулю, и являются бозонами, а потому фононный газ подчиняется статистике Бозе–Эйнштейна.

    Фононы могут испускаться и поглощаться, но их число не сохраняется постоянным.

Применение статистики Бозе–Эйнштейна к фононному газу (газу из независимых бозе–частиц) привело Дебая к следующему количественному выводу. При высоких температурах, которые много больше характеристической температуры Дебая (классическая область), теплоемкость твердых тел описывается законом Дюлонга и Пти, согласно которому молярная теплоемкость химически простых тел в кристаллическом состоянии одинакова и не зависит от температуры. При низких температурах, когда (квантовая область), теплоемкость пропорциональна третьей степени термодинамической температуры: Характеристическая температура Дебая равна: , где – предельная частота упругих колебаний кристаллической решетки.

Центральное понятие этой темы - понятие молекулы; слож­ность его усвоения школьниками связана с тем, что молекула - объект, непосредственно ненаблюдаемый. Поэтому учитель дол­жен убедить десятиклассников в реальности микромира, в возмож­ности его познания. В связи с этим большое внимание уделяют рассмотрению экспериментов, доказывающих существование и движение молекул и позволяющих вычислить их основные ха­рактеристики (классические опыты Перрена, Рэлея и Штерна). Кроме этого, целесообразно ознакомить учащихся с расчетными методами определения характеристик молекул. При рассмотрении доказательства существования и движения молекул рассказывают учащимся о наблюдениях Броуном беспо­рядочного движения мелких взвешенных частиц, которое не прекращалось в течение всего времени наблюдения. В то время не было дано правильного объяснения причины этого движения, и лишь спустя почти 80 лет А. Эйнштейн и М. Смолуховский построили, а Ж. Перрен экспериментально подтвердил теорию броу­новского движения. Из рассмотрения опытов Броуна необходимо сделать следую­щие выводы: а) движение броуновских частиц вызывается уда­рами молекул вещества, в котором эти частицы взвешены; б) броуновское движение непрерывно и беспорядочно, оно зави­сит от свойств вещества, в котором частицы взвешены; в) движе­ние броуновских частиц позволяет судить о движении молекул среды, в которой эти частицы находятся; г) броуновское движение доказывает существование молекул, их движение и непрерывный и хаотический характер этого движения. Подтверждение такого характера движения молекул было по­лучено в опыте французского физика Дюнуайе (1911 г.), который показал, что молекулы газа движутся в различных направлениях и в отсутствие соударений их движение прямолинейно. В настоя­щее время факт существования молекул ни у кого не вызывает сомнения. Развитие техники позволило непосредственно наблю­дать крупные молекулы. Рассказ о броуновском движении целесообразно сопровождать демонстрацией модели броуновского движения в вертикальной проекции с помощью проекционного фонаря или кодоскопа, а так­же показом кинофрагмента «Броуновское движение» из кинофиль­ма «Молекулы и молекулярное движение». Кроме того, полезно провести наблюдение броуновского движе­ния в жидкостях с помощью микроскопа. Препарат изготавлива­ют из смеси равных частей двух растворов: 1%-ного раствора серной кислоты и 2%-ного водного раствора гипосульфита. В ре­зультате реакции образуются частицы серы, которые находятся в растворе во взвешенном состоянии. Две капли этой смеси поме­щают на предметное стекло и наблюдают за поведением частиц серы. Препарат можно изготовить из сильно разбавленного рас­твора молока в воде или из раствора акварельной краски в воде. При обсуждении вопроса о размерах молекул рассматривают сущность опыта Р. Рэлея, который заключается в следующем: на поверхность воды, налитой в большой сосуд, помещают каплю оливкового масла. Капля растекается по поверхности воды и об­разует круглую пленку. Рэлей предположил, что, когда капля пере­стает растекаться, ее толщина становится равной диаметру одной молекулы. Опыты показывают, что молекулы различных веществ имеют разные размеры, но для оценки размеров молекул прини­мают величину, равную 10 -10 м. В классе можно проделать ана­логичный опыт. Для демонстрации расчетного метода определения размеров молекул приводят пример вычисления диаметров молекул различ­ных веществ по их плотностям и постоянной Авогадро. Представить малые размеры молекул школьникам трудно, по этому полезно привести ряд примеров сравнительного характера. Например, если увеличить все размеры во столько раз, чтобы молекула была видна (т. е. до 0,1 мм), то песчинка превратилась бы в стометровую скалу, муравей увеличился бы до размеров океанского корабля, человек обладал бы ростом 1700 км. Число молекул в количестве вещества 1 моль можно опреде­лить по результатам опыта с мономолекулярным слоем. Зная диа­метр молекулы, можно найти ее объем и объем количества ве­щества 1 моль, который равен где р - плотность жидкости. Отсюда определяют постоянную Аво­гадро. Расчетный метод заключается в определении числа молекул в количестве вещества 1 моль по известным значениям молярной массы и массы одной молекулы вещества. Значение постоянной Авогадро, по современным данным, 6,022169*10 23 моль -1 . С рас­четным методом определения постоянной Авогадро можно ознако­мить учащихся, предложив ее вычислить по значениям молярных масс разных веществ. Следует ознакомить школьников с числом Лошмидта, которое показывает, какое число молекул содержится в единице объема газа при нормальных условиях (оно равно 2,68799*10 -25 м -3). Де­сятиклассники могут самостоятельно определить число Лошмидта для нескольких газов и показать, что оно во всех случаях одно и то же. Приводя примеры, можно создать у ребят представление о том, насколько большим является число молекул в единице объе­ма. Если в резиновом воздушном шаре сделать прокол настолько тонкий, что через него каждую секунду будет выходить по 1 000 000 молекул, то понадобится примерно 30 млрд. лет, чтобы все молекулы вышли. Один из методов определения массы молекул основан на опыте Перрена, который исходил из того, что капли смолы в воде ведут себя так же, как молекулы в атмосфере. Перрен подсчитывал число капелек в разных слоях эмульсии, выделив с помощью мик­роскопа слои толщиной 0,0001 см. Высота, на которой таких капе­лек в два раза меньше, чем у дна, была равна h = 3*10 -5 м. Мас­са одной капли смолы оказалась равной М = 8,5*10 -18 кг. Если бы наша атмосфера состояла только из молекул кислорода, то на высоте Н=5 км плотность кислорода была бы в два раза меньше, чем у поверхности Земли. Записывают пропорцию m/M=h/H, откуда находят массу молекулы кислорода m=5,1*10 -26 кг. Предлагают учащимся самостоятельно рассчитать массу молекулы водорода, плотность которого в два раза мень­ше, чем у поверхности Земли, на высоте H=80 км. В настоящее время значения масс молекул уточнены. Напри­мер, для кислорода установлено значение 5,31*10 -26 кг, а для во­дорода - 0,33*10 -26 кг. При обсуждении вопроса о скоростях движения молекул уча­щихся знакомят с классическим опытом Штерна. При объяснении опыта целесообразно создать его модель с помощью прибора «Вращающийся диск с принадлежностями». На краю диска в вер­тикальном положении укрепляют несколько спичек, в центре диска - трубку с желобом. Когда диск неподвижен, шарик, опу­щенный в трубку, скатываясь по желобу, сбивает одну из спичек. Затем диск приводят во вращение с определенной скоростью, за­фиксированной по тахометру. Вновь пущенный шарик отклонится от первоначального направления движения (относительно диска) и собьет спичку, находящуюся на некотором расстоянии от первой. Зная это расстояние, радиус диска и скорость шарика на ободе диска, можно определить скорость движения шарика по радиусу. После этого целесообразно рассмотреть сущность опыта Штерна и конструкцию его установки, используя для иллюстрации кино­фрагмент «Опыт Штерна». Обсуждая результаты опыта Штерна, обращают внимание на то, что существует определенное распределение молекул по ско­ростям, о чем свидетельствует наличие у полоски напыленных атомов определенной ширины, причем толщина этой, полоски различна. Кроме того, важно отметить, что молекулы, движу­щиеся с большой скоростью, оседают ближе к месту напротив щели. Наибольшее число молекул имеет наиболее вероятную скорость. Необходимо сообщить учащимся, что теоретически закон рас­пределения молекул по скоростям был открыт Дж. К. Максвел­лом. Распределение молекул по скоростям может быть промодели­ровано на доске Гальтона. Вопрос о взаимодействии молекул школьники уже изучали в VII классе, в X классе знания по этому вопросу углубляют и рас­ширяют. Необходимо подчеркнуть следующие моменты: а) меж­молекулярное взаимодействие имеет электромагнитную природу; б) межмолекулярное взаимодействие характеризуется силами при­тяжения и отталкивания; в) силы межмолекулярного взаимодейст­вия действуют на расстояниях, не больших 2-3 диаметров моле­кул, причем на этом расстоянии заметна лишь сила притяжения, силы отталкивания практически равны нулю; г) по мере умень­шения расстояния между молекулами силы взаимодействия уве­личиваются, причем сила отталкивания растет быстрее (пропорционально г -9), чем сила притяжения (пропорционально r -7 ). Поэтому при уменьшении расстояния между молекулами сначала преобладает сила притяжения, затем при некотором расстоянии r о сила притяжения равна силе отталкивания и при дальнейшем сближении преобладает сила отталкивания. Все вышесказанное целесообразно проиллюстрировать графи­ком зависимости от расстояния сначала силы притяжения, силы отталкивания, а затем равнодействующей силы. Полезно постро­ить график потенциальной энергии взаимодействия, который в дальнейшем можно использовать при рассмотрении агрегатных состояний вещества. Внимание десятиклассников обращают на то, что состоянию устойчивого равновесия взаимодействующих частиц соответствует равенство нулю равнодействующей сил взаимодействия и наи­меньшее значение их взаимной потенциальной энергии. В твердом теле энергия взаимодействия частиц (энергия свя­зи) много больше кинетической энергии их теплового движения, поэтому движение частиц твердого тела представляет собой коле­бания относительно узлов кристаллической решетки. Если кинети­ческая энергия теплового движения молекул много больше потен­циальной энергии их взаимодействия, то движение молекул полно­стью беспорядочное и вещество существует в газообразном состоянии. Если кинетическая энергия теплового движения частиц сравнима с потенциальной энергией их взаимодействия, то веще­ство находится в жидком состоянии.

Определение 1

Молекулярно-кинетическая теория – это учение о строении и свойствах вещества, основанное на представлении о существовании атомов и молекул, как наименьших частиц химических веществ.

Основные положения молекулярно-кинетической теории молекулы:

  1. Все вещества могут быть в жидком, твердом и газообразном состоянии. Они образуются из частиц, которые состоят из атомов. Элементарные молекулы могут иметь сложное строение, то есть иметь в своем составе несколько атомов. Молекулы и атомы – электрически нейтральные частицы, которые в определенных условиях приобретают дополнительный электрический заряд и переходят в положительные или отрицательные ионы.
  2. Атомы и молекулы движутся непрерывно.
  3. Частицы с электрической природой силы взаимодействуют друг с другом.

Основные положения мкт и их примеры были перечислены выше. Между частицами имеется малое гравитационное воздействие.

Рисунок 3 . 1 . 1 . Траектория Броуновской частицы.

Определение 2

Броуновское движение молекул и атомов подтверждает существование основных положений молекулярно кинетической теории и опытно обосновывает его. Данное тепловое движение частиц происходит с взвешенными в жидкости или газе молекулами.

Опытное обоснование основных положений молекулярно кинетической теории

В 1827 году Р. Броун открыл это движение, которое было обусловлено беспорядочными ударами и перемещениями молекул. Так как процесс происходил хаотично, то удары не могли уравновесить друг друга. Отсюда вывод, что скорость броуновской частицы не может быть постоянной, она постоянно меняется, а движение направления изображается в виде зигзага, показанное на рисунке 3 . 1 . 1 .

О броуновском движении говорил еще А. Эйнштейн в 1905 году. Его теория нашла подтверждение в опытах Ж. Перрена 1908 - 1911 гг.

Определение 3

Следствие из теории Эйнштейна : квадрат смещения < r 2 > броуновской частицы относительно начального положения, усредненное по многим броуновским частицам, пропорционален времени наблюдения t .

Выражение < r 2 > = D t объясняет диффузионный закон. По теории имеем, что D монотонно возрастает с увеличением температуры. Беспорядочное движение проглядывается при наличии диффузии.

Определение 4

Диффузия – это определение явления проникновения двух или нескольких соприкасающихся веществ друг в друга.

Данный процесс происходит быстро в неоднородном газе. Благодаря примерам диффузии с разными плотностями можно получить однородную смесь. При нахождении в одном сосуде кислорода O 2 и водорода H 2 с перегородкой то при ее удалении газы начинают смешиваться, образую опасную смесь. Процесс возможен при нахождении вверху водорода, а внизу кислорода.

Процессы взаимопроникновения также протекают в жидкостях, но намного медленней. Если растворить твердое тело, сахар, в воде, то получим однородный раствор, который является наглядным примером диффузионных процессов в жидкостях. При реальных условиях смешивание в жидкостях и в газах замаскировано быстрыми процессами перемешивания, к примеру, при возникновении конвекционных потоков.

Диффузия твердых тел отличается своей замедленной скоростью. Если поверхность взаимодействия металлов очистить, то можно увидеть, что с течением большого периода времени в каждом из них появятся атомы другого металла.

Определение 5

Диффузия и броуновское движение считаются родственными явлениями.

При взаимопроникновении частиц обоих веществ движение беспорядочно, то есть, наблюдается хаотичное тепловое перемещение молекул.

Силы, действующие между двумя молекулами, зависят от расстояния между ними. Молекулы имеют в своем составе положительные и отрицательные заряды. При больших расстояниях преобладают силы межмолекулярного притяжения, при небольших – силы отталкивания.

Рисунок 3 . 1 . 2 показывает зависимость результирующей силы F и потенциальной энергии E р взаимодействия между молекулами от расстояния между их центрами. На расстоянии r = r 0 сила взаимодействияобращается в ноль. Данное расстояние условно принимается в качестве диаметра молекулы. При r = r 0 потенциальная энергиявзаимодействия минимальная.

Определение 6

Чтобы отдалить две молекулы с расстоянием r 0 , следует сообщить E 0 , называемую энергией связи или глубиной потенциальной ямы.

Рисунок 3 . 1 . 2 . Сила взаимодействия F и потенциальная энергия взаимодействия E р двух молекул. F > 0 – сила отталкивания, F < 0 – сила притяжения.

Так как молекулы имеют малые размеры, то простые одноатомные могут быть не более 10 – 10 м. Сложные могут достигать размеров в сотни раз больше.

Определение 7

Беспорядочное хаотичное движение молекул называют тепловым движением.

При возрастании температуры увеличивается кинетическая энергия теплового движения. При пониженных температурах средняя кинетическая энергия, в большинстве случаев, оказывается меньше значения глубины потенциальной ямы E 0 . Данный случай показывает, что молекулы перетекают в жидкое или твердое вещество со средним расстоянием между ними r 0 . Если температура повышается, то средняя кинетическая энергия молекулы превышает E 0 , тогда они разлетаются и образуют газообразное вещество.

В твердых телах молекулы двигаются беспорядочно около фиксированных центров, то есть, положений равновесий. В пространстве может быть распределены нерегулярным образом (у аморфных тел) или с образованием упорядоченных объемных структур (кристаллических тел).

Агрегатные состояния веществ

Свобода теплового движения молекул просматривается в жидкостях, так как у них нет привязки к центрам, что позволяет производить перемещения по всему объему. Этим объясняется ее текучесть.

Определение 8

Если молекулы располагаются близко, то могут образовывать упорядоченные структуры с несколькими молекулами. Данное явление получило название ближнего порядка. Дальний порядок характерен для кристаллических тел.

Расстояние в газах между молекулами намного больше, поэтому действующие силы малы, а их движения идут вдоль прямой, ожидая очередного соударения. Значение 10 – 8 м является средним расстоянием между молекулами воздуха в нормальных условиях. Так как взаимодействие сил слабое, газы расширяются и могут заполнять любой объем сосуда. Когда их взаимодействие стремится к нулю, то говорят о представлении идеального газа.

Кинетическая модель идеального газа

В мкт количество вещества считается пропорциональным числу частиц.

Определение 9

Моль – это количество вещества, содержащее столько частиц (молекул), сколько содержится атомов в 0 , 012 к г углерода C 12 . Молекула углерода состоит из одного атома. Отсюда следует, что 1 моль вещества имеет одно и то же количество молекул. Данное число называется постоянной Авогадро N А: N А = 6 , 02 ċ 1023 м о л ь – 1 .

Формула определения количества вещества ν записывается отношением N числа частиц на постоянную Авогадро N A: ν = N N A .

Определение 10

Массой одного моля вещества называют молярную массу М. Она фиксируется в виде формулы M = N А ċ m 0 .

Выражение молярной массы производится в килограммах на моль (к г / м о л ь) .

Определение 11

Если вещество имеет в составе один атом, тогда имеет место говорить об атомной массе частицы. Единица атома – это 1 12 массы изотопа углерода C 12 , называется атомной единицей массы и записывается как (а. е. м. ): 1 а. е. м. = 1 , 66 ċ 10 – 27 к г.

Данная величина совпадает с массой протона и нейтрона.

Определение 12

Отношение массы атома или молекулы данного вещества к 1 12 массы атома углерода называют относительной массой.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Нас окружают разнообразные предметы. Мы можем увидеть, что это либо твердые тела, либо жидкости, либо газы. Возникает масса вопросов обо всем, что нас окружает. Ответы на многие вопросы дает молекулярно-кинетическая теория .

Молекулярно-кинетическая теория – это совокупность воззрений, используемых для описания наблюдаемых и измеряемых свойств вещества на основе изучения свойств атомов и молекул данного вещества, их взаимодействия и движения.

Основные положения молекулярно-кинетической теории

  • Все тела состоят из частиц – атомов, молекул, ионов.
  • Все частицы находятся в непрерывном хаотическом тепловом движении.
  • Между частицами любого тела существуют силы взаимодействия – притяжения и отталкивания.

Таким образом, в молекулярно-кинетической теории объектом исследования является система, состоящая из большого количества частиц – макросистема . Для объяснения поведения такой системы законы механики не применимы. Поэтому основным методом исследования является статистический метод изучения свойств вещества.

Для объяснения и предсказания явлений важно знать основные характеристики молекул :

  1. Размеры

Оценка размера молекулы может быть сделана как размер кубика a в котором содержится одна молекула, исходя из плотности твердых или жидких веществ и массы одной молекулы:

  1. Масса молекул

Отношение массы вещества m к числу молекул N в данном веществе:

  1. Относительная молекулярная масса

Отношение массы молекулы (или атома) данного вещества к 1/12 массы атома углерода:

  1. Количество вещества

Количество вещества равно отношению числа частиц N в теле (атомов – в атомарном веществе, молекул – в молекулярном) к числу молекул в одном моле веществаN А:

  1. Постоянная Авогадро

Количество молекул, содержащихся в 1 моль вещества.

  1. Молярная масса

Молярной массой вещества называют массу вещества, взятого в количестве 1 моля.

В Международной системе единиц молярная масса вещества выражается в кг/моль .

  1. Взаимодействие (количественно на основе опытов)

Для взаимодействия молекул характерно одновременно и притяжение, и отталкивание: на расстояниях r 0 доминирует отталкивание, на расстоянии r>r 0 – притяжение, причем оно быстро убывает. На расстоянии r 0 система двух молекул обладает минимумом потенциальной энергии (сила взаимодействия равна нулю) – это состояние устойчивого равновесия

Молекулярно-кинетическая теория дает возможность понять, почему вещество может находиться в газообразном, жидком и твердом состояниях. С точки зрения МКТ агрегатные состояния различаются по значению среднего расстояния между молекулами и характеру движения молекул друг относительно друга .

Основные положения молекулярно-кинетической теории неоднократно подтверждались различными физическими экспериментами. Например, исследованием:

А) Диффузии

Б) Броуновского движения

Краткие итоги

Молекулярно-кинетическая теория объясняет строение и свойства тел на основе движения и взаимодействия атомов, молекул и ионов. В основе МКТ лежат три положения , которые полностью подтверждены экспериментально и теоретически:

1) все тела состоят из частиц – молекул, атомов, ионов;

2) частицы находятся в непрерывном хаотическом тепловом движении;

3) между частицами любого тела существуют силы взаимодействия – притяжения и отталкивания.

Молекулярное строение вещества подтверждается непосредственным наблюдением молекул в электронных микроскопах, а также растворением твердых веществ в жидкостях, сжимаемостью и проницаемостью вещества. Тепловое движение – броуновским движением и диффузией. Наличие межмолекулярного взаимодействия прочностью и упругостью твердых тел, поверхностным натяжением жидкостей.

Опорный конспект к уроку:

Вопросы для самоконтроля по блоку «Основные положения молекулярно-кинетической теории и их опытное обоснование»

  1. Сформулируйте основные положения молекулярно-кинетической теории.
  2. Какие наблюдения и эксперименты подтверждают основные положения молекулярно-кинетической теории?
  3. Что такое молекула? атом?
  4. Что называют относительной молекулярной массой? Какая формула выражает это понятие?
  5. Что называют количеством вещества? Какая формула выражает это понятие? Какова единица количества вещества?
  6. Что называют постоянной Авогадро?
  7. Что такое молярная масса вещества? Какая формула выражает смысл этого понятия? Какова единица молярной массы?
  8. Какова природа межмолекулярных сил?
  9. Какими свойствами обладают силы молекулярного взаимодействия?
  10. Как силы взаимодействия зависят от расстояния между ними?
  11. Опишите характер движения молекул в газах, жидкостях и твердых телах.
  12. Каков характер упаковки частиц у газов, жидкостей и твердых тел?
  13. Каково среднее расстояние между молекулами у газов, жидкостей и твердых тел?
  14. Перечислите основные свойства газов, жидкостей, твердых тел.
  15. Что называют броуновским движением?
  16. О чем свидетельствует броуновское движение?
  17. Что называют диффузией? Приведите примеры диффузии в газах, жидкостях и твердых телах.
  18. 18. Как зависит скорость диффузии от температуры тел?

Основные положения МКТ

Молекулярно-кинœетической теорией называют учение о строении и свойствах вещества на базе представления о существовании атомов и молекул как наименьших частиц химического вещества.

В корне молекулярно-кинœетической теории лежат три базовых положения:

1. Все вещества – жидкие, твердые и газообразные – образованы из мельчайших частиц – молекул, которые сами состоят из атомов (ʼʼэлементарных молекулʼʼ). Молекулы химического вещества бывают простыми и сложными и состоять из одного или нескольких атомов. Молекулы и атомы представляют из себяэлектрически нейтральные частицы. При определœенных условиях молекулы и атомы могут приобретать дополнительный электрический заряд и превращаться в положительные или отрицательные ионы.

2. Атомы и молекулы находятся в непрерывном хаотическом движении.

3. Частицы взаимодействуют друг с другом силами, имеющими электрическую природу. Гравитационное взаимодействие между частицами пренебрежимо мало.

Рисунок 3.1.1. Траектория броуновской частицы.

Наиболее ярким экспериментальным подтверждением представлений молекулярно-кинœетической теории о беспорядочном движении атомов и молекул является броуновское движение . Это тепловое движение мельчайших микроскопических частиц, взвешенных в жидкости или газе. Оно было открыто английским ботаником Р. Броуном (1827 ᴦ.). Броуновские частицы движутся под влиянием беспорядочных ударов молекул. Из-за хаотического теплового движения молекул эти удары никогда не уравновешивают друг друга. В результате скорость броуновской частицы беспорядочно меняется по модулю и направлению, а ее траектория представляет собой сложную зигзагообразную кривую (рис. 3.1.1). Теория броуновского движения была создана А. Эйнштейном (1905 ᴦ.). Экспериментально теория Эйнштейна была подтверждена в опытах французского физика Ж. Перрена (1908–1911 гᴦ.).

Силы, действующие между двумя молекулами, зависят от расстояния между ними. Молекулы представляют из себясложные пространственные структуры, содержащие как положительные, так и отрицательные заряды. В случае если расстояние между молекулами достаточно велико, то преобладают силы межмолекулярного притяжения. На малых расстояниях преобладают силы отталкивания. Зависимости результирующей силы F и потенциальной энергии E p взаимодействия между молекулами от расстояния между их центрами качественно изображены на рис. 3.1.2. При некотором расстоянии r = r 0 сила взаимодействия обращается в нуль. Это расстояние условно можно принять за диаметр молекулы. Потенциальная энергия взаимодействия при r = r 0 минимальна. Чтобы удалить друг от друга две молекулы, находящиеся на расстоянии r 0 , нужно сообщить им дополнительную энергию E 0 . Величина E 0 принято называть глубиной потенциальной ямы или энергией связи .

Молекулы имеют чрезвычайно малые размеры. Простые одноатомные молекулы имеют размер порядка 10 –10 м. Сложные многоатомные молекулы могут иметь размеры в сотни и тысячи раз больше.

Беспорядочное хаотическое движение молекул принято называть тепловым движением . Кинœетическая энергия теплового движения растет с возрастанием температуры . При низких температурах средняя кинœетическая энергия молекулы может оказаться меньше глубины потенциальной ямы E 0 . В этом случае молекулы конденсируются в жидкое или твердое вещество; при этом среднее расстояние между молекулами будет приблизительно равно r 0 . При повышении температуры средняя кинœетическая энергия молекулы становится больше E 0 , молекулы разлетаются, и образуется газообразное вещество.

В твердых телах молекулы совершают беспорядочные колебания около фиксированных центров (положений равновесия). Эти центры бывают расположены в пространстве нерегулярным образом (аморфные тела ) или образовывать упорядоченные объёмные структуры (кристаллические тела ) (см. §3.6).

В жидкостях молекулы имеют значительно большую свободу для теплового движения. Οʜᴎ не привязаны к определœенным центрам и могут перемещаться по всœему объёму жидкости. Этим объясняется текучесть жидкостей. Близко расположенные молекулы жидкости также могут образовывать упорядоченные структуры, содержащие несколько молекул. Это явление принято называть ближним порядком в отличие от дальнего порядка , характерного для кристаллических тел.

В газах расстояния между молекулами обычно значительно больше их размеров. Силы взаимодействия между молекулами на таких больших расстояниях малы, и каждая молекула движется вдоль прямой линии до очередного столкновения с другой молекулой или со стенкой сосуда. Среднее расстояние между молекулами воздуха при нормальных условиях порядка 10 –8 м, т. е. в десятки раз превышает размер молекул. Слабое взаимодействие между молекулами объясняет способность газов расширяться и заполнять весь объём сосуда. В пределœе, когда взаимодействие стремится к нулю, мы приходим к представлению об идеальном газе .

В молекулярно-кинœетической теории количество вещества принято считать пропорциональным числу частиц. Единица количества вещества принято называть молем (моль).

Моль - ϶ᴛᴏ количество вещества, содержащее столько же частиц (молекул), сколько содержится атомов в 0,012 кг углерода 12 C. Молекула углерода состоит из одного атома.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, в одном моле любого вещества содержится одно и то же число частиц (молекул). Это число принято называть постоянной Авогадро N A:

Постоянная Авогадро – одна из важнейших постоянных в молекулярно-кинœетической теории.

Количество вещества ν определяется как отношение числа N частиц (молекул) вещества к постоянной Авогадро N A:

Молярная масса выражается в килограммах на моль (кг/моль). Для веществ, молекулы которых состоят из одного атома, часто используется термин атомная масса .

За единицу массы атомов и молекул принимается 1/12 массы атома изотопа углерода 12 C (с массовым числом 12). Она принято называть атомной единицей массы (а. е. м.):

Эта величина почти совпадает с массой протона или нейтрона. Отношение массы атома или молекулы данного вещества к 1/12 массы атома углерода 12 C принято называть относительной массой .

Чтобы уточнить формулу для давления газа на стенку сосуда, предположим, что всœе молекулы, содержащиеся в единице объёма, разбиты на группы, содержащие n 1 , n 2 , n 3 и т. д. молекул с проекциями скоростей υ x1 , υ x2 , υ x3 и т. д. соответственно. При этом Каждая группа молекул вносит свой вклад в давление газа. В результате соударений со стенкой молекул с различными значениями проекций υ xi скоростей возникает суммарное давление

Теперь формулу для давления газа можно записать в виде

Последнее равенство вытекает из формулы:

Формула для среднего давления газа на стенку сосуда запишется в виде

Это уравнение устанавливает связь между давлением p идеального газа, массой молекулы m 0 , концентрацией молекул n , средним значением квадрата скорости и средней кинœетической энергией поступательного движения молекул. Его называют основным уравнением молекулярно-кинœетической теории газов.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, давление газа равно двум третям средней кинœетической энергии поступательного движения молекул, содержащихся в единице объёма .

В основное уравнение молекулярно-кинœетической теории газов входит произведение концентрации молекул n на среднюю кинœетическую энергию поступательного движения. В случае если предположить, что газ находится в сосуде неизменного объёма V , то (N – число молекул в сосуде). В этом случае изменение давления Δp пропорционально изменению средней кинœетической энергии.

Возникают вопросы: каким образом можно на опыте изменять среднюю кинœетическую энергию движения молекул в сосуде неизменного объёма? Какую физическую величину нужно изменить, чтобы изменилась средняя кинœетическая энергия Такой величиной в физике является температура .

Понятие температуры тесно связано с понятием теплового равновесия . Тела, находящиеся в контакте друг с другом, могут обмениваться энергией. Энергия, передаваемая одним телом другому при тепловом контакте, принято называть количеством теплоты .

Тепловое равновесие - ϶ᴛᴏ такое состояние системы тел, находящихся в тепловом контакте, при котором не происходит теплопередачи от одного тела к другому, и всœе макроскопические параметры тел остаются неизменными. Температура - ϶ᴛᴏ физический параметр, одинаковый для всœех тел, находящихся в тепловом равновесии. Возможность введения понятия температуры следует из опыта и носит название нулевого закона термодинамики .

Для измерения температуры используются физические приборы – термометры , в которых о величинœе температуры судят по изменению какого-либо физического параметра. Важно заметить, что для создания термометра крайне важно выбрать термометрическое вещество (к примеру, ртуть, спирт) и термометрическую величину , характеризующую свойство вещества (к примеру, длина ртутного или спиртового столбика). В различных конструкциях термометров используются разнообразные физические свойства вещества (к примеру, изменение линœейных размеров твердых тел или изменение электрического сопротивления проводников при нагревании).

Термометры должны быть откалиброваны. Для этого их приводят в тепловой контакт с телами, температуры которых считаются заданными. Чаще всœего используют простые природные системы, в которых температура остается неизменной, несмотря на теплообмен с окружающей средой - ϶ᴛᴏ смесь льда и воды и смесь воды и пара при кипении при нормальном атмосферном давлении. По температурной шкале Цельсия точке плавления льда приписывается температура 0 °С, а точке кипения воды – 100 °С. Изменение длины столба жидкости в капиллярах термометра на одну сотую длины между отметками 0 °С и 100 °С принимается равным 1 °С. В ряде стран (США) широко используется шкала Фаренгейта (T F), в которой температура замерзающей воды принимается равной 32 °F, а температура кипения воды равной 212 °F. Следовательно,

Чтобы проградуировать газовый термометр постоянного объёма, можно измерить давление при двух значениях температуры (к примеру, 0 °C и 100 °C), нанести точки p 0 и p 100 на график, а затем провести между ними прямую линию (рис. 3.2.5). Используя полученный таким образом калибровочный график, можно определять температуры, соответствующие другим значениям давления. Экстраполируя график в область низких давлений, можно определить некоторую ʼʼгипотетическуюʼʼ температуру, при которой давление газа стало бы равным нулю. Опыт показывает, что эта температура равна –273,15 °С и не зависит от свойств газа . Невозможно на опыте получить путем охлаждения газ в состоянии с нулевым давлением, так как при очень низких температурах всœе газы переходят в жидкие или твердые состояния.

Английский физик У. Кельвин (Томсон) в 1848 ᴦ. предложил использовать точку нулевого давления газа для построения новой температурной шкалы (шкала Кельвина ). В этой шкале единица измерения температуры такая же, как и в шкале Цельсия, но нулевая точка сдвинута:

T К = T С + 273,15.

В системе СИ принято единицу измерения температуры по шкале Кельвина называть кельвином и обозначать буквой K . К примеру, комнатная температура T С = 20 °С по шкале Кельвина равна T К = 293,15 К.

Температурная шкала Кельвина принято называть абсолютной шкалой температур . Она оказывается наиболее удобной при построении физических теорий.

Нет крайне важно сти привязывать шкалу Кельвина к двум фиксированным точкам – точке плавления льда и точке кипения воды при нормальном атмосферном давлении, как это принято в шкале Цельсия.

Кроме точки нулевого давления газа, которая принято называть абсолютным нулем температуры , достаточно принять еще одну фиксированную опорную точку. В шкале Кельвина в качестве такой точки используется температура тройной точки воды (0,01° С), в которой в тепловом равновесии находятся всœе три фазы – лед, вода и пар.
Размещено на реф.рф
По шкале Кельвина температура тройной точки принимается равной 273,16 К.

Газовые термометры громоздки и неудобны для практического применения: они используются в качестве прецизионного стандарта для калибровки других термометров.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, давление разреженного газа в сосуде постоянного объёма V изменяется прямо пропорционально его абсолютной температуре: p ~ T . С другой стороны, опыт показывает, что при неизменных объёме V и температуре T давление газа изменяется прямо пропорционально отношению количества вещества ν в данном сосуде к объёму V сосуда

где k – некоторая универсальная для всœех газов постоянная величина. Ее называют постоянной Больцмана , в честь австрийского физика Л. Больцмана (1844–1906 гᴦ.), одного из создателœей молекулярно-кинœетической теории. Постоянная Больцмана – одна из фундаментальных физических констант. Ее численное значение в СИ равно:

Сравнивая соотношения p = nkT с основным уравнением молекулярно-кинœетической теории газов, можно получить:

Средняя кинœетическая энергия хаотического движения молекул газа прямо пропорциональна абсолютной температуре.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, температура есть мера средней кинœетической энергии поступательного движения молекул .

Следует обратить внимание на то, что средняя кинœетическая энергия поступательного движения молекулы не зависит от ее массы. Броуновская частица, взвешенная в жидкости или газе, обладает такой же средней кинœетической энергией, как и отдельная молекула, масса которой на много порядков меньше массы броуновской частицы. Этот вывод распространяется и на случай, когда в сосуде находится смесь химически невзаимодействующих газов, молекулы которых имеют разные массы. В состоянии равновесия молекулы разных газов будут иметь одинаковые средние кинœетические энергии теплового движения, определяемые только температурой смеси. Давление смеси газов на стенки сосуда будет складываться из парциальных давлений каждого газа:

p = p 1 + p 2 + p 3 + … = (n 1 + n 2 + n 3 + …)kT .

В этом соотношении n 1 , n 2 , n 3 , … – концентрации молекул различных газов в смеси. Это соотношение выражает на языке молекулярно-кинœетической теории экспериментально установленный в начале XIX столетия закон Дальтона :давление в смеси химически невзаимодействующих газов равно сумме их парциальных давлений .

Основные положения МКТ - понятие и виды. Классификация и особенности категории "Основные положения МКТ" 2017, 2018.

Содержание статьи

МОЛЕКУЛЯРНО-КИНЕТИЧЕСКАЯ ТЕОРИЯ – раздел молекулярной физики, изучающий свойства вещества на основе представлений об их молекулярном строении и определенных законах взаимодействия между атомами (молекулами), из которых состоит вещество. Считается, что частицы вещества находятся в непрерывном, беспорядочном движении и это их движение воспринимается как тепло.

До 19 в. весьма популярной основой учения о тепле была теория теплорода или некоторой жидкой субстанции, перетекающей от одного тела к другому. Нагревание тел объяснялось увеличением, а охлаждение – уменьшением содержащегося внутри них теплорода. Понятие об атомах долго казалось ненужным для теории тепла, однако многие ученые уже тогда интуитивно связывали тепло с движением молекул. Так, в частности, думал русский ученый М.В.Ломоносов . Прошло немало времени, прежде чем молекулярно-кинетическая теория окончательно победила в сознании ученых и стала неотъемлемым достоянием физики.

Многие явления в газах, жидкостях и твердых телах находят в рамках молекулярно-кинетической теории простое и убедительное объяснение. Так давление , оказываемое газом на стенки сосуда, в котором он заключен, рассматривается как суммарный результат многочисленных соударений быстро движущихся молекул со стенкой, в результате которых они передают стенке свой импульс. (Напомним, что именно изменение импульса в единицу времени приводит по законам механики к появлению силы, а сила, отнесенная к единице поверхности стенки, и есть давление). Кинетическая энергия движения частиц, усредненная по их огромному числу, определяет то, что принято называть температурой вещества.

Истоки атомистической идеи, т.е. представления о том, что все тела в природе состоят из мельчайших неделимых частиц-атомов, восходят еще к древнегреческим философам – Левкиппу и Демокриту. Более двух тысяч лет назад Демокрит писал: «…атомы бесчисленны по величине и по множеству, носятся же они во вселенной, кружась в вихре, и таким образом рождается все сложное: огонь, вода, воздух, земля». Решающий вклад в развитие молекулярно-кинетической теории был внесен во второй половине 19 в. трудами замечательных ученых Дж.К.Максвелла и Л.Больцмана , которые заложили основы статистического (вероятностного) описания свойств веществ (главным образом, газов), состоящих из огромного числа хаотически движущихся молекул. Статистический подход был обобщен (по отношению к любым состояниям вещества) в начале 20 в. в трудах американского ученого Дж.Гиббса , который считается одним из основоположников статистической механики или статистической физики. Наконец, в первые десятилетия 20 в. физики поняли, что поведение атомов и молекул подчиняется законам не классической, а квантовой механики. Это дало мощный импульс развитию статистической физики и позволило описать целый ряд физических явлений, которые ранее не поддавались объяснению в рамках обычных представлений классической механики.

Молекулярно-кинетическая теория газов.

Каждая молекула, летящая к стенке, при столкновении с ней передает стенке свой импульс. Поскольку скорость молекулы при упругом столкновении со стенкой меняется от величины v до –v , величина передаваемого импульса равна 2mv . Сила, действующая на поверхность стенки D S за время D t , определяется величиной полного импульса, передаваемого всеми молекулами достигнувшим стенки за этот промежуток времени, т.е. F = 2mv n c D S /D t , где n c определено выражением (1). Для величины давления p = F /D S в этом случае находим: p = (1/3)nmv 2.

Для получения окончательного результата можно отказаться от предположения об одинаковой скорости молекул, выделив независимые группы молекул, каждая из которых имеет свою приблизительно одинаковую скорость. Тогда средняя величина давления находится усреднением квадрата скорости по всем группам молекул или

Это выражение можно представить также в виде

Этой формуле удобно придать другой вид, умножив числитель и знаменатель под знаком квадратного корня на число Авогадро

N a = 6,023·10 23 .

Здесь M = mN A – атомная или молекулярная масса, величина R = kN A = 8,318·10 7 эрг называется газовой постоянной.

Средняя скорость молекул в газе даже при умеренных температурах оказывается очень большой. Так, для молекул водорода (H 2) при комнатной температуре (T = 293K) эта скорость равна около 1900 м/c , для молекул азота в воздухе – порядка 500 м/с. Скорость звука в воздухе при тех же условиях равна 340 м/с.

Учитывая, что n = N /V , где V – объем, занимаемый газом, N – полное число молекул в этом объеме, легко получить следствия из (5) в виде известных газовых законов. Для этого полное число молекул представляется в виде N = vN A , где v – число молей газа, и уравнение (5) принимает вид

(8) pV = vRT ,

которое носит название уравнения Клапейрона – Менделеева.

При условии T = const давление газа меняется обратно пропорционально занимаемому им объему (закон Бойля – Мариотта).

В замкнутом сосуде фиксированного объема V = const давление меняется прямо пропорционально изменению абсолютной температуры газа Т . Если газ находится в условиях, когда постоянным сохраняется его давление p = const, но изменяется температура (такие условия можно осуществить, например, если поместить газ в цилиндр, закрытый подвижным поршнем), то объем, занимаемый газом, будет меняться пропорционально изменению его температуры (закон Гей-Люссака).

Пусть в сосуде есть смесь газов, т.е. имеются несколько разных сортов молекул. В этом случае величина импульса, передаваемого стенке молекулами каждого сорта, не зависит от наличия молекул других сортов. Отсюда следует, что давление смеси идеальных газов равно сумме парциальных давлений, которые создавал бы каждый газ в отдельности, если бы занимал весь объем. В этом состоит еще один из газовых законов – известный закон Дальтона .

Длина свободного пробега молекул. Одним из первых, кто еще в 1850-х дал разумные оценки величины средней тепловой скорости молекул различных газов, был австрийский физик Клаузиус. Полученные им непривычно большие значения этих скоростей сразу же вызвали возражения. Если скорости молекул действительно так велики, то запах любого пахучего вещества должен был бы практически мгновенно распространяться из одного конца замкнутого помещения в другой. На самом деле распространение запаха происходит очень медленно и осуществляется, как теперь известно, посредством процесса так называемой диффузии в газе. Клаузиус, а затем и другие исследователи, сумели дать убедительное объяснение этому и другим процессам переноса в газе (таким как теплопроводность и вязкость) с помощью понятия средней длины свободного пробега молекул, т.е. среднего расстояния, которое пролетает молекула от одного столкновения до другого.

Каждая молекула в газе испытывает очень большое число столкновений с другими молекулами. В промежутке между столкновениями молекулы движутся практически прямолинейно, испытывая резкие изменения скорости лишь в момент самого столкновения. Естественно, что длины прямолинейных участков на пути молекулы могут быть различными, поэтому имеет смысл говорить лишь о некоторой средней длине свободного пробега молекул.

За время D t молекула проходит сложный зигзагообразный путь, равный v D t . Изломов траектории на этом пути столько, сколько произошло столкновений. Пусть Z означает число столкновений, которое испытывает молекула в единицу времени Средняя длина свободного пробега равна тогда отношению длины пути N 2, например, a » 2,0·10 –10 м. В таблице 1 приведены рассчитанные по формуле (10) значения l 0 в мкм (1мкм = 10 –6 м) для некоторых газов при нормальных условиях (p = 1атм, T =273K). Эти значения оказываются примерно в 100–300 раз больше собственного диаметра молекул.