Ду высших порядков с постоянными коэффициентами. Дифференциальные уравнения для "чайников". Примеры решения

Часто одно лишь упоминание дифференциальных уравнений вызывает у студентов неприятное чувство. Почему так происходит? Чаще всего потому, что при изучении основ материала возникает пробел в знаниях, из-за которого дальнейшее изучение дифуров становиться просто пыткой. Ничего не понятно, что делать, как решать, с чего начать?

Однако мы постараемся вам показать, что дифуры – это не так сложно, как кажется.

Основные понятия теории дифференциальных уравнений

Со школы нам известны простейшие уравнения, в которых нужно найти неизвестную x. По сути дифференциальные уравнения лишь чуточку отличаются от них – вместо переменной х в них нужно найти функцию y(х) , которая обратит уравнение в тождество.

Дифференциальные уравнения имеют огромное прикладное значение. Это не абстрактная математика, которая не имеет отношения к окружающему нас миру. С помощью дифференциальных уравнений описываются многие реальные природные процессы. Например, колебания струны, движение гармонического осциллятора, посредством дифференциальных уравнений в задачах механики находят скорость и ускорение тела. Также ДУ находят широкое применение в биологии, химии, экономике и многих других науках.

Дифференциальное уравнение (ДУ ) – это уравнение, содержащее производные функции y(х), саму функцию, независимые переменные и иные параметры в различных комбинациях.

Существует множество видов дифференциальных уравнений: обыкновенные дифференциальные уравнения, линейные и нелинейные, однородные и неоднородные, дифференциальные уравнения первого и высших порядков, дифуры в частных производных и так далее.

Решением дифференциального уравнения является функция, которая обращает его в тождество. Существуют общие и частные решения ДУ.

Общим решением ДУ является общее множество решений, обращающих уравнение в тождество. Частным решением дифференциального уравнения называется решение, удовлетворяющее дополнительным условиям, заданным изначально.

Порядок дифференциального уравнения определяется наивысшим порядком производных, входящих в него.

Обыкновенные дифференциальные уравнения

Обыкновенные дифференциальные уравнения – это уравнения, содержащие одну независимую переменную.

Рассмотрим простейшее обыкновенное дифференциальное уравнение первого порядка. Оно имеет вид:

Решить такое уравнение можно, просто проинтегрировав его правую часть.

Примеры таких уравнений:

Уравнения с разделяющимися переменными

В общем виде этот тип уравнений выглядит так:

Приведем пример:

Решая такое уравнение, нужно разделить переменные, приведя его к виду:

После этого останется проинтегрировать обе части и получить решение.

Линейные дифференциальные уравнения первого порядка

Такие уравнения имеют вид:

Здесь p(x) и q(x) – некоторые функции независимой переменной, а y=y(x) – искомая функция. Приведем пример такого уравнения:

Решая такое уравнение, чаще всего используют метод вариации произвольной постоянной либо представляют искомую функцию в виде произведения двух других функций y(x)=u(x)v(x).

Для решения таких уравнений необходима определенная подготовка и взять их “с наскока” будет довольно сложно.

Пример решения ДУ с разделяющимися переменными

Вот мы и рассмотрели простейшие типы ДУ. Теперь разберем решение одного из них. Пусть это будет уравнение с разделяющимися переменными.

Сначала перепишем производную в более привычном виде:

Затем разделим переменные, то есть в одной части уравнения соберем все "игреки", а в другой – "иксы":

Теперь осталось проинтегрировать обе части:

Интегрируем и получаем общее решение данного уравнения:

Конечно, решение дифференциальных уравнений – своего рода искусство. Нужно уметь понимать, к какому типу относится уравнение, а также научиться видеть, какие преобразования нужно с ним совершить, чтобы привести к тому или иному виду, не говоря уже просто об умении дифференцировать и интегрировать. И чтобы преуспеть в решении ДУ, нужна практика (как и во всем). А если у Вас в данный момент нет времени разбираться с тем, как решаются дифференциальные уравнения или задача Коши встала как кость в горле или вы не знаете, обратитесь к нашим авторам. В сжатые сроки мы предоставим Вам готовое и подробное решение, разобраться в подробностях которого Вы сможете в любое удобное для Вас время. А пока предлагаем посмотреть видео на тему "Как решать дифференциальные уравнения":

Теорию вычислений неоднородных дифференциальных уравнений (ДУ) приводить в данной публикации не будем, из предыдущих уроков Вы можете найти достаточно информации, чтобы найти ответ на вопрос "Как решить неоднородное дифференциальное уравнение?" Степень неоднородного ДУ здесь большой роли не играет, не так уж и много имеется способов, которые позволяют вычислить решение подобных ДУ. Чтобы Вам было легко читать ответы в примерах основной акцент сделан только на методику вычислений и подсказки, которые облегчат вывод конечной функции.

Пример 1. Решить дифференциальное уравнение
Решение: Задано однородное дифференциальное уравнение третьего порядка, причем оно содержит лишь вторую и третью производные и не имеет функции и ее первой производной. В таких случаях применяют метод понижения степени дифференциального уравнения. Для этого вводят параметр - обозначим вторую производную через параметр p

тогда третья производная функции равна

Исходное однородное ДУ упростится к виду

Записываем его в дифференциалах, далее сводим к уравнению с разделенными переменными и находим решение интегрированием

Вспоминаем что параметр это вторая производная функции

поэтому для нахождения формулы самой функции дважды интегрируем найденную дифференциальную зависимость

В функции сталые C 1 , C 2 , C 3 – равны произвольным значениям.
Вот так просто выглядит схема позволяющая найти общее решение однородного дифференциального уравнения методом введения параметра. Следующие задачи более сложные и из них вы научитесь решать неоднородные дифференциальные уравнения третьего порядка. Между однородными и неоднородными ДУ в плане вычислений является некоторое различие, в этом Вы сейчас убедитесь.

Пример 2. Найти
Решение: Имеем третьего порядка. Поэтому его решение следует искать в вид суммы двух - решения однородного и частного решения неоднородного уравнения

Решим сначала

Как видите оно содержит только вторую и третью производную функции и не содержит самой функции. Такого сорта диф. уравнения решают методом введения параметра, что в в свою очередь снижает и упрощает нахождение решения уравнения. На практике это выглядит следующим образом: пусть вторая производная равна определенной функции , тогда третья производная формально будет иметь запись

Рассмотренное однородное ДУ 3 порядка преобразуется к уравнению первого порядка

откуда разделяя переменные находим интеграл
x*dp-p*dx=0;

Сталые в таких задачах рекомендуем нумеровать, поскольку решение дифференциального уравнения 3 порядка имеет 3 постоянные, четвертого - 4 и и дальше по аналогии. Теперь возвращаемся к введенному параметру: поскольку вторая производная имеет вид то интегрируя ее один раз мы имеем зависимость для производной функции

и повторным интегрированием находим общий вид однородной функции

Частичное решение уравнения запишем в виде переменной умноженной на логарифм. Это следует из того что правая (неоднородная) часть ДУ равна -1/x и чтобы получить эквивалентную запись

следует решение искать в виде

Найдем коэффициент A , для этого вычислим производные первого и второго порядков

Подставим найденные выражения в исходное дифференциальное уравнение и приравняем коэффициенты при одинаковых степенях x:

Сталая равна -1/2 , а имеет вид

Общее решение дифференциального уравнения записываем в виде суммы найденных

где C 1 , C 2 , C 3 - произвольные константы которые можно уточнить с задачи Коши.

Пример 3. Найти интеграл ДУ третьего порядка
Решение: Ищем общий интеграл неоднородного ДУ третьего порядка в виде суммы решения однородного и частичного неоднородного уравнения . Сначала для любого типа уравнений начинаем анализировать однородное дифференциальное уравнение

Оно содержит только вторую и третью производные неизвестной пока функции. Вводим замену переменных (параметр): обозначим за вторую производную

Тогда третья производная равна

Такие же преобразования выполняли в предыдущем задании. Это позволяет свести дифференциальное уравнения третьего порядка к уравнению первого порядка вида

Интегрированием находим

Вспоминаем, что в соответствии с заменой переменных это всего лишь вторая производная

а чтобы найти решение однородного дифференциального уравнения третьего порядка ее нужно дважды проинтегрировать

Исходя из вида правой стороны (неоднородной части =x+1 ), частичное решение уравнения ищем в виде

Как знать в каком виде искать частичный решение Вас должны были научить в теоретической части курса дифференциальных уравнений. Если нет, то можем только подсказать, что за функцию выбирают такое выражение чтобы при подстановке в уравнение слагаемое, содержащее старшую производную или моложе был одного порядка (подобный) с неоднородной частью уравнения

Думаю теперь Вам понятнее, откуда берется вид частного решения. Найдем коэффициенты A, B, для этого вычисляем вторую и третью производную функции

и подставляем в дифференциальное уравнение. После группировки подобных слагаемых получим линейное уравнение

из которого при одинаковых степенях переменной составляем систему уравнений

и находим неизвестные сталые. После их подстановки выражается зависимостью

Общее решение дифференциального уравнения равно сумме однородного и частичного и имеет вид

где С 1 , С 2 , С 3 - произвольные константы.

Пример 4. Решить дифференциальное уравнение
Решение: Имеем решение которого будем находить через сумму . Схема вычислений Вам известна, поэтому переходим к рассмотрению однородного дифференциального уравнения

По стандартной методике вводим параметр
Исходное дифференциальное уравнение примет вид , откуда разделив переменные находим

Вспоминаем что параметр равен второй производной
Интегрируя ДУ получим первую производную функции

Повторным интегрированием находим общий интеграл однородного дифференциального уравнения

Частичное решение уравнения ищем в виде , так как правая часть равна
Найдем коэффициент A - для этого подставим y* в дифференциальное уравнение и приравняем коэффициент при одинаковых степенях переменной

После подстановки и группировки слагаемых получим зависимость

из которой сталая равна A=8/3.
Таким образом, можем записать частичное решение ДУ

Общее решение дифференциального уравнения равно сумме найденных

где С 1 , С 2 , С 3 - произвольные константы. Если заданно условие Коши, то их очень легко можем доопределить.

Считаю, что материал Вам пригодится при подготовке к практическим занятиям, модулям или контрольной работе. Здесь не разбирали задачу Коши, однако из предыдущих уроков Вы в целом знаете как это сделать.


В некоторых задачах физики непосредственную связь между величинами, описывающими процесс, установить не удается. Но существует возможность получить равенство, содержащее производные исследуемых функций. Так возникают дифференциальные уравнения и потребность их решения для нахождения неизвестной функции.

Эта статья предназначена тем, кто столкнулся с задачей решения дифференциального уравнения, в котором неизвестная функция является функцией одной переменной. Теория построена так, что с нулевым представлением о дифференциальных уравнениях, вы сможете справиться со своей задачей.

Каждому виду дифференциальных уравнений поставлен в соответствие метод решения с подробными пояснениями и решениями характерных примеров и задач. Вам остается лишь определить вид дифференциального уравнения Вашей задачи, найти подобный разобранный пример и провести аналогичные действия.

Для успешного решения дифференциальных уравнений с Вашей стороны также потребуется умение находить множества первообразных (неопределенные интегралы) различных функций. При необходимости рекомендуем обращаться к разделу .

Сначала рассмотрим виды обыкновенных дифференциальных уравнений первого порядка, которые могут быть разрешены относительно производной, далее перейдем к ОДУ второго порядка, следом остановимся на уравнениях высших порядков и закончим системами дифференциальных уравнений.

Напомним, что , если y является функцией аргумента x .

Дифференциальные уравнения первого порядка.

    Простейшие дифференциальные уравнения первого порядка вида .

    Запишем несколько примеров таких ДУ .

    Дифференциальные уравнения можно разрешить относительно производной, произведя деление обеих частей равенства на f(x) . В этом случае приходим к уравнению , которое будет эквивалентно исходному при f(x) ≠ 0 . Примерами таких ОДУ являются .

    Если существуют значения аргумента x , при которых функции f(x) и g(x) одновременно обращаются в ноль, то появляются дополнительные решения. Дополнительными решениями уравнения при данных x являются любые функции, определенные для этих значений аргумента. В качестве примеров таких дифференциальных уравнений можно привести .

Дифференциальные уравнения второго порядка.

    Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами .

    ЛОДУ с постоянными коэффициентами является очень распространенным видом дифференциальных уравнений. Их решение не представляет особой сложности. Сначала отыскиваются корни характеристического уравнения . При различных p и q возможны три случая: корни характеристического уравнения могут быть действительными и различающимися , действительными и совпадающими или комплексно сопряженными . В зависимости от значений корней характеристического уравнения, записывается общее решение дифференциального уравнения как , или , или соответственно.

    Для примера рассмотрим линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами . Корнями его характеристического уравнения являются k 1 = -3 и k 2 = 0 . Корни действительные и различные, следовательно, общее решение ЛОДУ с постоянными коэффициентами имеет вид

    Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами .

    Общее решение ЛНДУ второго порядка с постоянными коэффициентами y ищется в виде суммы общего решения соответствующего ЛОДУ и частного решения исходного неоднородного уравнения, то есть, . Нахождению общего решения однородного дифференциального уравнения с постоянными коэффициентами , посвящен предыдущий пункт. А частное решение определяется либо методом неопределенных коэффициентов при определенном виде функции f(x) , стоящей в правой части исходного уравнения, либо методом вариации произвольных постоянных.

    В качестве примеров ЛНДУ второго порядка с постоянными коэффициентами приведем

    Разобраться в теории и ознакомиться с подробными решениями примеров мы Вам предлагаем на странице линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами .

    Линейные однородные дифференциальные уравнения (ЛОДУ) и линейные неоднородные дифференциальные уравнения (ЛНДУ) второго порядка .

    Частным случаем дифференциальных уравнений этого вида являются ЛОДУ и ЛНДУ с постоянными коэффициентами.

    Общее решение ЛОДУ на некотором отрезке представляется линейной комбинацией двух линейно независимых частных решений y 1 и y 2 этого уравнения, то есть, .

    Главная сложность заключается именно в нахождении линейно независимых частных решений дифференциального уравнения этого типа. Обычно, частные решения выбираются из следующих систем линейно независимых функций:

    Однако, далеко не всегда частные решения представляются в таком виде.

    Примером ЛОДУ является .

    Общее решение ЛНДУ ищется в виде , где - общее решение соответствующего ЛОДУ, а - частное решение исходного дифференциального уравнения. О нахождении мы только что говорили, а можно определить, пользуясь методом вариации произвольных постоянных.

    В качестве примера ЛНДУ можно привести .

Дифференциальные уравнения высших порядков.

    Дифференциальные уравнения, допускающие понижение порядка.

    Порядок дифференциального уравнения , которое не содержит искомой функции и ее производных до k-1 порядка, может быть понижен до n-k заменой .

    В этом случае , и исходное дифференциальное уравнение сведется к . После нахождения его решения p(x) останется вернуться к замене и определить неизвестную функцию y .

    Например, дифференциальное уравнение после замены станет уравнением с разделяющимися переменными , и его порядок с третьего понизится до первого.

Дифференциальные уравнения высших порядков

    Основная терминология дифференциальных уравнений высших порядков (ДУ ВП).

Уравнение вида , где n >1 (2)

называется дифференциальным уравнением высшего порядка, т. е. n -го порядка.

Область определения ДУ, n -го порядка есть область .

В данном курсе будут рассматриваться ДУ ВП следующих видов:

Задача Коши ДУ ВП:

Пусть дано ДУ ,
и начальные условия н/у: числа .

Требуется найти непрерывную и n раз дифференцируемую функцию
:

1)
является решением данного ДУ на , т. е.
;

2) удовлетворяет заданным, начальным условиям: .

Для ДУ второго порядка геометрическая интерпретация решения задачи заключается в следующем: ищется интегральная кривая, проходящая через точку (x 0 , y 0 ) и касающаяся прямой с угловым коэффициентом k = y 0 ́ .

Теорема существования и единственности (решения задачи Коши для ДУ (2)):

Если 1)
непрерывна (по совокупности (n +1) аргументов) в области
; 2)
непрерывны (по совокупности аргументов
) в , то ! решение задачи Коши для ДУ , удовлетворяющее заданным начальным условиям н/у: .

Область называется областью единственности ДУ.

Общее решение ДУ ВП (2) – n -параметрическая функция ,
, где
– произвольные постоянные, удовлетворяющая следующим требованиям:

1)

– решение ДУ (2) на ;

2) н/у из области единственности !
:
удовлетворяет заданным начальным условиям.

Замечание .

Соотношение вида
, неявно определяющее общее решение ДУ (2) на называется общим интегралом ДУ.

Частное решение ДУ (2) получается из его общего решения при конкретном значении .

    Интегрирование ДУ ВП.

Дифференциальные уравнения высших порядков, как правило, не решаются точными аналитическими методами.

Выделим некоторого вида ДУВП, допускающих понижения порядка и сводящихся к квадратурам. Сведем в таблицу эти виды уравнений и способы понижения их порядка.

ДУ ВП, допускающие понижения порядка

Способ понижения порядка

ДУ неполное, в нём отсутствуют
. Например,

И т.д. После n кратного интегрирования получится общее решение ДУ.

Уравнение неполное; в нём явно не содержится искомая функция
и её
первых производных.

Например,

Подстановка

понижает порядок уравнения на k единиц.

Неполное уравнение; в нём явно не содержится аргумента искомой функции . Например,

Подстановка

понижается порядок уравнения на единицу.

Уравнение в точных производных, оно может быть полным и неполным. Такое уравнение можно преобразовать к виду (*) ́= (*)́, где правая и левая части уравнения есть точные производные некоторых функций.

Интегрирование правой и левой части уравнения по аргументу понижает порядок уравнения на единицу.

Подстановка

понижает порядок уравнения на единицу.

Определение однородной функции:

Функция
называется однородной по переменным
, если


в любой точке области определения функции
;

– порядок однородности.

Например, – функция однородная 2-го порядка относительно
, т.е. .

Пример 1 :

Найти общее решение ДУ
.

ДУ 3-го порядка, неполное, не содержит явно
. Последовательно интегрируем уравнение три раза.

,

– общее решение ДУ.

Пример 2 :

Решить задачу Коши для ДУ
при

.

ДУ второго порядка, неполное, не содержит явно .

Подстановка
и ее производная
понизит порядок ДУ на единицу.

. Получили ДУ первого порядка – уравнение Бернулли. Для решения этого уравнения применим подстановку Бернулли:

,

и подставим в уравнение.

На этом этапе решим задачу Коши для уравнения
:
.

– уравнение первого порядка с разделяющимися переменными.

В последнее равенство подставляем начальные условия:

Ответ:
– решение задачи Коши, удовлетворяющее начальным условиям.

Пример 3:

Решить ДУ.

– ДУ 2-го порядка, неполное, не содержит явно переменную , и поэтому допускает понижение порядка на единицу с помощью подстановки или
.

Получим уравнение
(пусть
).

– ДУ 1-го порядка с разделяющими переменными. Разделим их.

– общий интеграл ДУ.

Пример 4 :

Решить ДУ.

Уравнение
есть уравнение в точных производных. Действительно,
.

Проинтегрируем левую и правую части по , т. е.
или . Получили ДУ 1-го порядка с разделяющимися переменными т. е.
– общий интеграл ДУ.

Пример5 :

Решить задачу Коши для
при .

ДУ 4-го порядка, неполное, не содержит явно
. Заметив, что это уравнение в точных производных, получим
или
,
. Подставим в это уравнение начальные условия:
. Получим ДУ
3-го порядка первого вида (см. таблицу). Проинтегрируем его три раза, и после каждого интегрирования в уравнение будем подставлять начальные условия:

Ответ:
- решение задачи Коши исходного ДУ.

Пример 6 :

Решить уравнение.

– ДУ 2-го порядка, полное, содержит однородность относительно
. Подстановка
понизит порядок уравнения. Для этого приведем уравнение к виду
, разделив обе части исходного уравнения на . И продифференцируем функцию p :

.

Подставим
и
в ДУ:
. Это уравнение 1-го порядка с разделяющимися переменными .

Учитывая, что
, получим ДУ или
– общее решение исходного ДУ.

Теория линейных дифференциальных уравнений высшего порядка.

Основная терминология.

– НЛДУ -го порядка, где – непрерывные функции на некотором промежутке .

Называется интервалом непрерывности ДУ (3).

Введем (условный) дифференциальный оператор -го порядка

При действии его на функцию , получим

Т. е. левую часть линейного ДУ -го порядка.

Вследствие этого ЛДУ можно записать

Линейные свойства оператора
:

1) – свойство аддитивности

2)
– число – свойство однородности

Свойства легко проверяются, т. к. производные этих функций обладают аналогичными свойствами (конечная сумма производных равна сумме конечного числа производных; постоянный множитель можно вынести за знак производной).

Т. о.
– линейный оператор.

Рассмотрим вопрос существования и единственности решения задачи Коши для ЛДУ
.

Разрешим ЛДУ относительно
: ,
, – интервал непрерывности.

Функция непрерывная в области , производные
непрерывны в области

Следовательно, область единственности , в которой задача Коши ЛДУ (3) имеет единственное решение и зависит только от выбора точки
, все остальные значения аргументов
функции
можно брать произвольными.

Общая теория ОЛДУ .

– интервал непрерывности.

Основные свойства решений ОЛДУ:

1. Свойство аддитивности

(
– решение ОЛДУ (4) на )
(
– решение ОЛДУ (4) на ).

Доказательство:

– решение ОЛДУ (4) на

– решение ОЛДУ (4) на

Тогда

2. Свойство однородности

( – решение ОЛДУ (4) на ) (
( – числовое поле))

– решение ОЛДУ (4) на .

Доказывается аналогично.

Свойства аддитивности и однородности называются линейными свойствами ОЛДУ (4).

Следствие:

(
– решение ОЛДУ (4) на )(

– решение ОЛДУ (4) на ).

3. ( – комплексно-значное решение ОЛДУ (4) на )(
– действительно-значные решения ОЛДУ (4) на ).

Доказательство:

Если – решение ОЛДУ (4) на , то при подстановке в уравнение обращает его в тождество, т. е.
.

В силу линейности оператора , левую часть последнего равенства можно записать так:
.

Это значит, что , т. е. – действительно-значные решения ОЛДУ (4) на .

Последующие свойства решений ОЛДУ связаны с понятием “линейная зависимость ”.

Определение линейной зависимости конечной системы функций

Система функций называется линейно зависимой на , если найдётся нетривиальный набор чисел
такой, что линейная комбинация
функций
с этими числами тождественно равна нулю на , т. е.
.n , что неверно. Теорема доказана.дифференциальные уравнения высших порядков (4 час...

Уравнения, решающиеся непосредственным интегрированием

Рассмотрим дифференциальное уравнение следующего вида:
.
Интегрируем n раз.
;
;
и так далее. Так же можно использовать формулу:
.
См. Дифференциальные уравнения, решающиеся непосредственным интегрированием > > >

Уравнения, не содержащие зависимую переменную y в явном виде

Подстановка приводит к понижению порядка уравнения на единицу. Здесь - функция от .
См. Дифференциальные уравнения высших порядков, не содержащие функцию в явном виде > > >

Уравнения, не содержащие независимую переменную x в явном виде


.
Считаем, что является функцией от . Тогда
.
Аналогично для остальных производных. В результате порядок уравнения понижается на единицу.
См. Дифференциальные уравнения высших порядков, не содержащие переменную в явном виде > > >

Уравнения, однородные относительно y, y′, y′′, ...

Для решения этого уравнения, делаем подстановку
,
где - функция от . Тогда
.
Аналогично преобразуем производные и т.д. В результате порядок уравнения понижается на единицу.
См. Однородные относительно функции и ее производных дифференциальные уравнения высших порядков > > >

Линейные дифференциальные уравнения высших порядков

Рассмотрим линейное однородное дифференциальное уравнение n-го порядка :
(1) ,
где - функции от независимой переменной . Пусть есть n линейно независимых решений этого уравнения. Тогда общее решение уравнения (1) имеет вид:
(2) ,
где - произвольные постоянные. Сами функции образуют фундаментальную систему решений.
Фундаментальная система решений линейного однородного уравнения n-го порядка - это n линейно независимых решений этого уравнения.

Рассмотрим линейное неоднородное дифференциальное уравнение n-го порядка :
.
Пусть есть частное (любое) решение этого уравнения. Тогда общее решение имеет вид:
,
где - общее решение однородного уравнения (1).

Линейные дифференциальные уравнения с постоянными коэффициентами и приводящиеся к ним

Линейные однородные уравнения с постоянными коэффициентами

Это уравнения вида:
(3) .
Здесь - действительные числа. Чтобы найти общее решение этого уравнения, нам нужно найти n линейно независимых решений , которые образуют фундаментальную систему решений. Тогда общее решение определяется по формуле (2):
(2) .

Ищем решение в виде . Получаем характеристическое уравнение :
(4) .

Если это уравнение имеет различные корни , то фундаментальная система решений имеет вид:
.

Если имеется комплексный корень
,
то существует и комплексно сопряженный корень . Этим двум корням соответствуют решения и , которые включаем в фундаментальную систему вместо комплексных решений и .

Кратным корням кратности соответствуют линейно независимых решений: .

Кратным комплексным корням кратности и их комплексно сопряженным значениям соответствуют линейно независимых решений:
.

Линейные неоднородные уравнения со специальной неоднородной частью

Рассмотрим уравнение вида
,
где - многочлены степеней s1 и s2 ; - постоянные.

Сначала мы ищем общее решение однородного уравнения (3). Если характеристическое уравнение (4) не содержит корень , то ищем частное решение в виде:
,
где
;
;
s - наибольшее из s1 и s2 .

Если характеристическое уравнение (4) имеет корень кратности , то ищем частное решение в виде:
.

После этого получаем общее решение:
.

Линейные неоднородные уравнения с постоянными коэффициентами

Здесь возможны три способа решения.

1) Метод Бернулли .
Сначала находим любое, отличное от нуля, решение однородного уравнения
.
Затем делаем подстановку
,
где - функция от переменной x . Получаем дифференциальное уравнение для u , которое содержит только производные от u по x . Выполняя подстановку , получаем уравнение n - 1 - го порядка.

2) Метод линейной подстановки .
Сделаем подстановку
,
где - один из корней характеристического уравнения (4). В результате получим линейное неоднородное уравнение с постоянными коэффициентами порядка . Последовательно применяя такую подстановку, приведем исходное уравнение к уравнению первого порядка.

3) Метод вариации постоянных Лагранжа .
В этом методе мы сначала решаем однородное уравнение (3). Его решение имеет вид:
(2) .
Далее мы считаем, что постоянные являются функциями от переменной x . Тогда решение исходного уравнения имеет вид:
,
где - неизвестные функции. Подставляя в исходное уравнение и накладывая на некоторые ограничения, получаем уравнения, из которых можно найти вид функций .

Уравнение Эйлера

Оно сводится к линейному уравнению с постоянными коэффициентами подстановкой:
.
Однако, для решения уравнения Эйлера, делать такую подстановку нет необходимости. Можно сразу искать решение однородного уравнения в виде
.
В результате получим такие же правила, как и для уравнения с постоянными коэффициентами, в которых вместо переменной нужно подставить .

Использованная литература:
В.В. Степанов, Курс дифференциальных уравнений, «ЛКИ», 2015.
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.