В линейном уравнении множественной регрессии независимыми переменными. Множественная регрессия

Во время учебы студенты очень часто сталкиваются с разнообразными уравнениями. Одно из них - уравнение регрессии - рассмотрено в данной статье. Такой тип уравнения применяется специально для описания характеристики связи между математическими параметрами. Данный вид равенств используют в статистике и эконометрике.

Определение понятия регрессии

В математике под регрессией подразумевается некая величина, описывающая зависимость среднего значения совокупности данных от значений другой величины. Уравнение регрессии показывает в качестве функции определенного признака среднее значение другого признака. Функция регрессии имеет вид простого уравнения у = х, в котором у выступает зависимой переменной, а х - независимой (признак-фактор). Фактически регрессия выражаться как у = f (x).

Какие бывают типы связей между переменными

В общем, выделяется два противоположных типа взаимосвязи: корреляционная и регрессионная.

Первая характеризуется равноправностью условных переменных. В данном случае достоверно не известно, какая переменная зависит от другой.

Если же между переменными не наблюдается равноправности и в условиях сказано, какая переменная объясняющая, а какая - зависимая, то можно говорить о наличии связи второго типа. Для того чтобы построить уравнение линейной регрессии, необходимо будет выяснить, какой тип связи наблюдается.

Виды регрессий

На сегодняшний день выделяют 7 разнообразных видов регрессии: гиперболическая, линейная, множественная, нелинейная, парная, обратная, логарифмически линейная.

Гиперболическая, линейная и логарифмическая

Уравнение линейной регрессии применяют в статистике для четкого объяснения параметров уравнения. Оно выглядит как у = с+т*х+Е. Гиперболическое уравнение имеет вид правильной гиперболы у = с + т / х + Е. Логарифмически линейное уравнение выражает взаимосвязь с помощью логарифмической функции: In у = In с + т* In x + In E.

Множественная и нелинейная

Два более сложных вида регрессии - это множественная и нелинейная. Уравнение множественной регрессии выражается функцией у = f(х 1 , х 2 ...х с)+E. В данной ситуации у выступает зависимой переменной, а х - объясняющей. Переменная Е - стохастическая, она включает влияние других факторов в уравнении. Нелинейное уравнение регрессии немного противоречиво. С одной стороны, относительно учтенных показателей оно не линейное, а с другой стороны, в роли оценки показателей оно линейное.

Обратные и парные виды регрессий

Обратная - это такой вид функции, который необходимо преобразовать в линейный вид. В самых традиционных прикладных программах она имеет вид функции у = 1/с + т*х+Е. Парное уравнение регрессии демонстрирует взаимосвязь между данными в качестве функции у = f (x) + Е. Точно так же, как и в других уравнениях, у зависит от х, а Е - стохастический параметр.

Понятие корреляции

Это показатель, демонстрирующий существование взаимосвязи двух явлений или процессов. Сила взаимосвязи выражается в качестве коэффициента корреляции. Его значение колеблется в рамках интервала [-1;+1]. Отрицательный показатель говорит о наличии обратной связи, положительный - о прямой. Если коэффициент принимает значение, равное 0, то взаимосвязи нет. Чем ближе значение к 1 - тем сильнее связь между параметрами, чем ближе к 0 - тем слабее.

Методы

Корреляционные параметрические методы могут оценить тесноту взаимосвязи. Их используют на базе оценки распределения для изучения параметров, подчиняющихся закону нормального распределения.

Параметры уравнения линейной регрессии необходимы для идентификации вида зависимости, функции регрессионного уравнения и оценивания показателей избранной формулы взаимосвязи. В качестве метода идентификации связи используется поле корреляции. Для этого все существующие данные необходимо изобразить графически. В прямоугольной двухмерной системе координат необходимо нанести все известные данные. Так образуется поле корреляции. Значение описывающего фактора отмечаются вдоль оси абсцисс, в то время как значения зависимого - вдоль оси ординат. Если между параметрами есть функциональная зависимость, они выстраиваются в форме линии.

В случае если коэффициент корреляции таких данных будет менее 30 %, можно говорить о практически полном отсутствии связи. Если он находится между 30 % и 70 %, то это говорит о наличии связей средней тесноты. 100 % показатель - свидетельство функциональной связи.

Нелинейное уравнение регрессии так же, как и линейное, необходимо дополнять индексом корреляции (R).

Корреляция для множественной регрессии

Коэффициент детерминации является показателем квадрата множественной корреляции. Он говорит о тесноте взаимосвязи представленного комплекса показателей с исследуемым признаком. Он также может говорить о характере влияния параметров на результат. Уравнение множественной регрессии оценивают с помощью этого показателя.

Для того чтобы вычислить показатель множественной корреляции, необходимо рассчитать его индекс.

Метод наименьших квадратов

Данный метод является способом оценивания факторов регрессии. Его суть заключается в минимизировании суммы отклонений в квадрате, полученных вследствие зависимости фактора от функции.

Парное линейное уравнение регрессии можно оценить с помощью такого метода. Этот тип уравнений используют в случае обнаружения между показателями парной линейной зависимости.

Параметры уравнений

Каждый параметр функции линейной регрессии несет определенный смысл. Парное линейное уравнение регрессии содержит два параметра: с и т. Параметр т демонстрирует среднее изменение конечного показателя функции у, при условии уменьшения (увеличения) переменной х на одну условную единицу. Если переменная х - нулевая, то функция равняется параметру с. Если же переменная х не нулевая, то фактор с не несет в себе экономический смысл. Единственное влияние на функцию оказывает знак перед фактором с. Если там минус, то можно сказать о замедленном изменении результата по сравнению с фактором. Если там плюс, то это свидетельствует об ускоренном изменении результата.

Каждый параметр, изменяющий значение уравнения регрессии, можно выразить через уравнение. Например, фактор с имеет вид с = y - тх.

Сгруппированные данные

Бывают такие условия задачи, в которых вся информация группируется по признаку x, но при этом для определенной группы указываются соответствующие средние значения зависимого показателя. В таком случае средние значения характеризуют, каким образом изменяется показатель, зависящий от х. Таким образом, сгруппированная информация помогает найти уравнение регрессии. Ее используют в качестве анализа взаимосвязей. Однако у такого метода есть свои недостатки. К сожалению, средние показатели достаточно часто подвергаются внешним колебаниям. Данные колебания не являются отображением закономерности взаимосвязи, они всего лишь маскируют ее «шум». Средние показатели демонстрируют закономерности взаимосвязи намного хуже, чем уравнение линейной регрессии. Однако их можно применять в виде базы для поиска уравнения. Перемножая численность отдельной совокупности на соответствующую среднюю можно получить сумму у в пределах группы. Далее необходимо подбить все полученные суммы и найти конечный показатель у. Чуть сложнее производить расчеты с показателем суммы ху. В том случае если интервалы малы, можно условно взять показатель х для всех единиц (в пределах группы) одинаковым. Следует перемножить его с суммой у, чтобы узнать сумму произведений x на у. Далее все суммы подбиваются вместе и получается общая сумма ху.

Множественное парное уравнение регрессии: оценка важности связи

Как рассматривалось ранее, множественная регрессия имеет функцию вида у = f (x 1 ,x 2 ,…,x m)+E. Чаще всего такое уравнение используют для решения проблемы спроса и предложения на товар, процентного дохода по выкупленным акциям, изучения причин и вида функции издержек производства. Ее также активно применяют в самых разнообразным макроэкономических исследованиях и расчетах, а вот на уровне микроэкономики такое уравнение применяют немного реже.

Основной задачей множественной регрессии является построение модели данных, содержащих огромное количество информации, для того чтобы в дальнейшем определить, какое влияние имеет каждый из факторов по отдельности и в их общей совокупности на показатель, который необходимо смоделировать, и его коэффициенты. Уравнение регрессии может принимать самые разнообразные значения. При этом для оценки взаимосвязи обычно используется два типа функций: линейная и нелинейная.

Линейная функция изображается в форме такой взаимосвязи: у = а 0 + a 1 х 1 + а 2 х 2 ,+ ... + a m x m . При этом а2, a m , считаются коэффициентами «чистой» регрессии. Они необходимы для характеристики среднего изменения параметра у с изменением (уменьшением или увеличением) каждого соответствующего параметра х на одну единицу, с условием стабильного значения других показателей.

Нелинейные уравнения имеют, к примеру, вид степенной функции у=ах 1 b1 х 2 b2 ...x m bm . В данном случае показатели b 1 , b 2 ..... b m - называются коэффициентами эластичности, они демонстрируют, каким образом изменится результат (на сколько %) при увеличении (уменьшении) соответствующего показателя х на 1 % и при стабильном показателе остальных факторов.

Какие факторы необходимо учитывать при построении множественной регрессии

Для того чтобы правильно построить множественную регрессию, необходимо выяснить, на какие именно факторы следует обратить особое внимание.

Необходимо иметь определенное понимание природы взаимосвязей между экономическими факторами и моделируемым. Факторы, которые необходимо будет включать, обязаны отвечать следующим признакам:

  • Должны быть подвластны количественному измерению. Для того чтобы использовать фактор, описывающий качество предмета, в любом случае следует придать ему количественную форму.
  • Не должна присутствовать интеркорреляция факторов, или функциональная взаимосвязь. Такие действия чаще всего приводят к необратимым последствиям - система обыкновенных уравнений становится не обусловленной, а это влечет за собой ее ненадежность и нечеткость оценок.
  • В случае существования огромного показателя корреляции не существует способа для выяснения изолированного влияния факторов на окончательный результат показателя, следовательно, коэффициенты становятся неинтерпретируемыми.

Методы построения

Существует огромное количество методов и способов, объясняющих, каким образом можно выбрать факторы для уравнения. Однако все эти методы строятся на отборе коэффициентов с помощью показателя корреляции. Среди них выделяют:

  • Способ исключения.
  • Способ включения.
  • Пошаговый анализ регрессии.

Первый метод подразумевает отсев всех коэффициентов из совокупного набора. Второй метод включает введение множества дополнительных факторов. Ну а третий - отсев факторов, которые были ранее применены для уравнения. Каждый из этих методов имеет право на существование. У них есть свои плюсы и минусы, но они все по-своему могут решить вопрос отсева ненужных показателей. Как правило, результаты, полученные каждым отдельным методом, достаточно близки.

Методы многомерного анализа

Такие способы определения факторов базируются на рассмотрении отдельных сочетаний взаимосвязанных признаков. Они включают в себя дискриминантный анализ, распознание обликов, способ главных компонент и анализ кластеров. Кроме того, существует также факторный анализ, однако он появился вследствие развития способа компонент. Все они применяются в определенных обстоятельствах, при наличии определенных условий и факторов.

1. Модель с двумя независимыми переменными.

2. Оценка коэффициентов модели множественной регрессии методом наименьших квадратов.

3. Парная и частная корреляция в модели множественной регрессии.

4. Оценка качества модели множественной регрессии.

5. Мультиколлинеарность и методы ее устранения.

6. Интерпретация коэффициентов модели множественной регрессии.

Множественная регрессия - это уравнение статистической связи с несколькими независимыми переменными:

y = f (x 1 , x 2 , x p)

где y - зависимая переменная (результативный признак);

x 1 , x 2 , x p - независимые переменные (факторы).

Построение уравнения множественной регрессии начинается с решения вопроса о спецификации модели. Он включает в себя два круга вопросов: отбор факторов и выбор вида уравнения регрессии.

Факторы, включаемые во множественную регрессию, должны отвечать следующим требованиям:

1. Они должны быть количественно измеримы. Если необходимо включить в модель качественный фактор, не имеющий количественного измерения, то ему нужно придать количественную определенность.

2. Факторы не должны быть интеркоррелированы и тем более находиться в точной функциональной связи.

Включаемые во множественную регрессию факторы должны объяснить вариацию независимой переменной. Если строится модель с набором факторов, то для нее рассчитывается показатель детерминации , который фиксирует долю объясненной вариации результативного признака за счет рассматриваемых в регрессии факторов. Влияние других, не учтенных в модели факторов, оценивается как с соответствующей остаточной дисперсией .

Отбор факторов обычно осуществляется в две стадии: на первой подбираются факторы исходя из сущности проблемы; на второй - на основе матрицы показателей корреляции определяют статистики для параметров регрессии.

Коэффициенты интеркорреляции (т.е. корреляции между объясняющими переменными) позволяют исключать из модели дублирующие факторы. Считается, что две переменные явно коллинеарны, т.е. находятся между собой в линейной зависимости, если . Если факторы явно коллинеарны, то они дублируют друг друга и один из них рекомендуется исключить из регрессии.

Пусть, например, при изучении зависимости матрица парных коэффициентов корреляции оказалась следующей:

0,8 0,7 0,6
0,8 0,8 0,5
0,7 0,8 0,2
0,6 0,5 0,2

Очевидно, что факторы и дублируют друг друга. В анализ целесообразно включить фактор , а не , хотя корреляция с результатом слабее, чем корреляция фактора с , но зато значительно слабее межфакторная корреляция . Поэтому в данном случае в уравнение множественной регрессии включаются факторы , .


По величине парных коэффициентов корреляции обнаруживается лишь явная коллинеарность факторов. Наибольшие трудности в использовании аппарата множественной регрессии возникают при наличии мультиколлинеарности факторов, когда более чем два фактора связаны между собой линейной зависимостью, т.е. имеет место совокупное воздействие факторов друг на друга . Наличие мультиколлинеарности факторов может означать, что некоторые факторы будут всегда действовать в унисон. В результате вариация в исходных данных перестает быть полностью независимой и нельзя оценить воздействие каждого фактора в отдельности.

Включение в модель мультиколлинеарных факторов нежелательно в силу следующих последствий:

1. Затрудняется интерпретация параметров множественной регрессии как характеристик действия факторов в «чистом» виде, ибо факторы коррелированы; параметры линейной регрессии теряют экономический смысл.

2. Оценки параметров ненадежны, обнаруживают большие стандартные ошибки и меняются с изменением объема наблюдений (не только по величине, но и по знаку), что делает модель непригодной для анализа и прогнозирования.

Для оценки мультиколлинеарности факторов может использоваться определитель матрицы парных коэффициентов корреляции между факторами.

Если бы факторы не коррелировали между собой, то матрица парных коэффициентов корреляции между факторами была бы единичной матрицей, поскольку все недиагональные элементы были бы равны нулю. Так, для уравнения, включающего три объясняющих переменных

матрица коэффициентов корреляции между факторами имела бы определитель, равный единице:

.

Если же, наоборот, между факторами существует полная линейная зависимость и все коэффициенты корреляции равны единице, то определитель такой матрицы равен нулю:

.

Чем ближе к нулю определитель матрицы межфакторной корреляции, тем сильнее мультиколлинеарность факторов и ненадежнее результаты множественной регрессии. И, наоборот, чем ближе к единице определитель матрицы межфакторной корреляции, тем меньше мультиколлинеарность факторов.

Самый простой путь устранения мультиколлинеарности состоит в исключении из модели одного или нескольких факторов. Другой подход связан с преобразованием факторов, при котором уменьшается корреляция между ними.

Одним из путей учета внутренней корреляции факторов является переход к совмещенным уравнениям регрессии, т.е. к уравнениям, которые отражают не только влияние факторов, но и их взаимодействие. Так, если , то возможно построение следующего совмещенного уравнения:

Рассматриваемое уравнение включает взаимодействие первого порядка (взаимодействие двух факторов). Возможно включение в модель и взаимодействий более высокого порядка, если будет доказана их статистическая значимость по -критерию Фишера, но, как правило, взаимодействия третьего и более высоких порядков оказываются статистически незначимыми.

В зависимости от того, какая методика построения уравнения регрессии принята, меняется алгоритм ее решения на ЭВМ.

Наиболее широкое применение получили следующие методы построения уравнения множественной регрессии:

1. Метод исключения - отсев факторов из полного его набора.

2. Метод включения - дополнительное введение фактора.

3. Шаговый регрессионный анализ - исключение ранее введенного фактора.

2 Множественная линейная регрессия

2.1 Определение параметров уравнения регрессии

На любой экономический показатель чаще всего оказывает влияние не один, а несколько факторов. В этом случае вместо парной регрессии рассматривается множественная регрессия

Задача оценки статистической взаимосвязи переменных и
формулируется аналогично случаю парной регрессии. Уравнение множественной регрессии может быть представлено в виде:

, (2.2)

где
– вектор независимых (объясняющих) переменных; – вектор параметров (подлежащих определению); – случайная ошибка (отклонение); – зависимая (объясняемая) переменная.

Рассмотрим самую употребляемую и наиболее простую из моделей множественной регрессии – модель множественной линейной регрессии.

Теоретическое линейное уравнение регрессии имеет вид:

или для индивидуальных наблюдений
:

Здесь
– вектор размерности
неизвестных параметров.
называется -тым теоретическим коэффициентом регрессии (частичным коэффициентом регрессии). Он характеризует чувствительность величины к изменению величины , т.е. отражает влияние на условное математическое ожидание
зависимой переменной объясняющей переменной при условии, что все другие объясняющие переменные модели остаются постоянными. – свободный член, определяющий в случае, когда все объясняющие переменные равны нулю.

После выбора линейной функции в качестве модели зависимости необходимо оценить параметры регрессии. Пусть имеется наблюдений вектора объясняющих переменных и зависимой переменной :

Для того чтобы однозначно можно было решить задачу нахождения параметров
(т.е. найти некоторый наилучший вектор ), должно выполняться неравенство
. Если это неравенство не будет выполняться, то существует бесконечно много различных векторов параметров, при которых линейная формула связи между
и будет абсолютно точно соответствовать имеющимся наблюдениям.

Например, для однозначного определения оценок параметров уравнения регрессии достаточно иметь выборку из трех наблюдений . В этом случае найденные значения параметров
определяют такую плоскость в трехмерном пространстве, которая пройдет именно через три точки. С другой стороны, добавление в выборку к имеющимся трем наблюдениям еще одного приведет к тому, что четвертая точка
практически наверняка будет лежать вне построенной плоскости, что потребует определенной переоценки параметров.

Число
называется числом степеней свободы . Если число степеней свободы невелико, то статистическая надежность оцениваемой формулы невысока. Например, вероятность верного вывода (получения более точных оценок) по трем наблюдениям существенно ниже, чем по тридцати. Считается, что при оценивании множественной линейной регрессии для обеспечения статистической надежности требуется, чтобы число наблюдений по крайней мере в три раза превосходило число оцениваемых параметров.

Самым распространенным методом оценки параметров уравнения множественной регрессии является метод наименьших квадратов (МНК).

Предпосылки МНК :

Как и в случае парной регрессии, истинные значения параметров по выборке получить невозможно. В этом случае вместо теоретического уравнения регрессии оценивается эмпирическое уравнение регрессии:

Здесь
– оценки теоретических значений коэффициентов регрессии (эмпирические коэффициенты регрессии); – оценка отклонения . Для индивидуальных наблюдений имеем:

При выполнении предпосылок МНК относительно ошибок оценки параметров множественной линейной регрессии по МНК являются несмещенными, эффективными и состоятельными.

На основании (2.6): . (2.7)

Тогда по методу наименьших квадратов для нахождения оценок минимизируется следующая функция:

. (2.8)

Необходимым условием минимизации функции является равенство нулю всех ее частных производных по , т.е.:

(2.9)

Приравнивая их к нулю, получаем систему
линейных уравнений с неизвестными. Такая система обычно имеет единственное решение и называется системой нормальных уравнений. Ее решение в явном виде наиболее наглядно представимо в векторно-матричной форме.

2.2 Расчет коэффициентов множественной линейной регрессии

Данные наблюдений и соответствующие коэффициенты в матричной форме выглядят следующим образом:




.

Здесь
-мерный вектор-столбец наблюдений зависимой переменной ; – матрица размерности
, в которой -тая строка
представляет наблюдение вектора значений независимых переменных ; единица соответствует переменной при свободном члене ; – вектор-столбец размерности параметров уравнения регрессии; – вектор-столбец размерности отклонений выборочных (реальных) значений зависимой переменной от значений , получаемых по уравнению регрессии

Функция
в матричной форме представима как произведение вектор-строки
на вектор-столбец . Вектор-столбец может быть в свою очередь представлен в следующем виде:

. (2.11)

Здесь
– векторы и матрицы, транспонированные к
соответственно. При выводе формулы использовались следующие известные соотношения линейной алгебры:

Необходимым условием экстремума функции является равенство нулю ее частных производных
по всем параметрам
. Вектор-столбец частных производных в матричном виде выглядит следующим образом:

. (2.12)

Рассмотрим более подробно нахождение . Очевидно, что

от не зависит, следовательно,
.

Обозначим вектор-столбец
размерности через . Тогда
, где – соответствующий элемент вектора . Поэтому
.

Обозначим матрицу
размерности через . Тогда



.

Следовательно, частная производная
.

В результате имеем
.

Следовательно, формула (2.12) справедлива. Приравняв к нулю, получаем:

(2.13)

(2.14)

Здесь
– матрица, обратная к .

Полученные общие соотношения справедливы для уравнений регрессии с произвольным количеством
объясняющих переменных. Проанализируем полученные результаты для случаев:


,
,
, .

Из (2.11) следует: , т.е.

.

Из (2.14) следует

(2.15)


(2.16)

Решение данной системы имеет вид:

(2.17)

2.3 Анализ качества эмпирического уравнения множественной линейной регрессии

Построение эмпирического уравнения регрессии является начальным этапом эконометрического анализа. Первое же построенное по выборке уравнение регрессии очень редко является удовлетворительным по тем или иным характеристикам. Поэтому следующей важнейшей оценкой является проверка качества уравнения регрессии. В эконометрике принята устоявшаяся схема такой проверки, которая проводится по следующим направлениям:

    проверка статистической значимости коэффициентов уравнения регрессии;

    проверка общего качества уравнения регрессии;

    проверка свойств данных, выполнимость которых предполагалась при оценивании уравнения (проверка выполнимости предпосылок МНК).

Прежде чем проводить анализ качества уравнения регрессии, необходимо определить дисперсии и стандартные ошибки коэффициентов, а также интервальные оценки коэффициентов.

Выборочные дисперсии эмпирических коэффициентов регрессии можно определить следующим образом:

. (2.18)

Здесь – -тый диагональный элемент матрицы
.

При этом:

, (2.19)

где – количество объясняющих переменных модели. Иногда в формуле (2.19) знаменатель представляют в виде
, подразумевая под число параметров модели (подлежащих определению коэффициентов регрессии).

В частности, для уравнения
с двумя объясняющими переменными используются следующие формулы:

,

,

,
,
. (2.20)

Здесь – выборочный коэффициент корреляции между объясняющими переменными и
; стандартная ошибка коэффициента регрессии; – стандартная ошибка регрессии (несмещенная оценка).

По аналогии с парной регрессией после определения точечных оценок коэффициентов (
) теоретического уравнения регрессии могут быть рассчитаны интервальные оценки указанных коэффициентов. Доверительный интервал, накрывающий с надежностью
неизвестное значение параметра , определяется как

(2.21)

Проверка статистической значимости коэффициентов уравнения регрессии.

Как и в случае парной регрессии, статистическая значимость коэффициентов множественной линейной регрессии с объясняющими переменными проверяется на основе -статистики:

, (2.22)

имеющей в данном случае распределение Стьюдента с числом степеней свободы . При требуемом уровне значимости наблюдаемое значение -статистики сравнивается с критической точной
распределения Стьюдента.

В случае, если
, то статистическая значимость соответствующего коэффициента регрессии подтверждается. Это означает, что фактор линейно связан с зависимой переменной . Если же установлен факт незначимости коэффициента , то рекомендуется исключить из уравнения переменную . Это не приведет к существенной потере качества модели, но сделает ее более конкретной.

При оценке значимости коэффициентов линейной регрессии на начальном этапе также можно использовать «грубое» правило, рассмотренное в главе 1.3, позволяющее не прибегать к таблицам.

Проверка общего качества уравнения регрессии

Для этой цели, как и в случае парной регрессии, используется коэффициент детерминации
:

(2.23)

Справедливо соотношение
. Чем ближе этот коэффициент к единице, тем больше уравнение регрессии объясняет поведение .

Для множественной регрессии коэффициент детерминации является неубывающей функцией числа объясняющих переменных. Добавление новой объясняющей переменной никогда не уменьшает значение , так как каждая последующая переменная может лишь дополнить, но никак не сократить информацию, объясняющую поведение зависимой переменной. может принимать отрицательные значения., то критерия мультиколлинеарности может быть принято... пределах. 5. Проверка гипотез относительно коэффициентов уравнения регрессии (проверка значимости параметров множественного уравнения регрессии ). 1) t-статистика...

  • Аннотация дисциплины (12)

    Автореферат диссертации

    Информационная сеть Интернет. Раздел 14 . Корпоративные информационные сети. Раздел... множественной регрессии . Парная линейная регрессия . Множественная линейная регрессия . Проверка качества уравнения регрессии . Нелинейные модели регрессии и линеаризация...

  • Федеральное государственное бюджетное образовательное (44)

    Задача

    О значимости выборочного коэффициента корреляции. Проверка качества уравнения регрессии . Классическая регрессионная модель. Предпосылки... Статические оценки параметров распределения 3 6 14 ,15 4 3 3 ИЗ–6 14 Проверка статистических гипотез 3 6 16 2 1 ...

  • Основная цель множественной регрессии – построить модель с большим числом факторов, определив при этом влияние каждого из них в отдельности, а также совокупное их воздействие на моделируемый показатель.

    Назначение сервиса . С помощью онлайн-калькулятора можно найти следующие показатели:

    • уравнение множественной регрессии, матрица парных коэффициентов корреляции, средние коэффициенты эластичности для линейной регрессии;
    • множественный коэффициент детерминации, доверительные интервалы для индивидуального и среднего значения результативного признака;
    Кроме этого проводится проверка на автокорреляцию остатков и гетероскедастичность .

    Инструкция . Укажите количество данных (количество строк), количество переменных x нажмите Далее. Полученное решение сохраняется в файле Word (см. пример нахождения уравнения множественной регрессии и корреляции). Если данных много, можно вставить их из MS Excel . Для этого укажите количество переменных x нажмите Вставить из Excel ().

    Количество факторов (x) 1 2 3 4 5 6 7 8 9 10 Количество строк
    ",0);">

    При вычислении параметров уравнения множественной регрессии используется матричный метод . Для множественной регрессии с двумя переменными (m = 2), можно воспользоваться методом решения системы уравнений .

    Построение уравнения множественной регрессии начинается с решения вопроса о спецификации модели, который в свою очередь включает 2 круга вопросов: отбор факторов и выбор уравнения регрессии .

    Отбор факторов обычно осуществляется в два этапа:

    1. теоретический анализ взаимосвязи результата и круга факторов, которые оказывают на него существенное влияние;
    2. количественная оценка взаимосвязи факторов с результатом. При линейной форме связи между признаками данный этап сводится к анализу корреляционной матрицы (матрицы парных линейных коэффициентов корреляции). Научно обоснованное решение задач подобного вида также осуществляется с помощью дисперсионного анализа - однофакторного , если проверяется существенность влияния того или иного фактора на рассматриваемый признак, или многофакторного в случае изучения влияния на него комбинации факторов.
    Факторы, включаемые во множественную регрессию, должны отвечать следующим требованиям:
    1. Они должны быть количественно измеримы. Если необходимо включить в модель качественный фактор, не имеющий количественного измерения, то ему нужно придать количественную определенность.
    2. Каждый фактор должен быть достаточно тесно связан с результатом (т.е. коэффициент парной линейной корреляции между фактором и результатом должен быть существенным).
    3. Факторы не должны быть сильно коррелированы друг с другом, тем более находиться в строгой функциональной связи (т.е. они не должны быть интеркоррелированы). Разновидностью интеркоррелированности факторов является мультиколлинеарность - тесная линейная связь между факторами.

    Пример . Постройте регрессионную модель с 2-мя объясняющими переменными (множественная регрессия). Определите теоретическое уравнение множественной регрессии. Оцените адекватность построенной модели.
    Решение .
    К исходной матрице X добавим единичный столбец, получив новую матрицу X


    Находим обратную матрицу (X T X) -1
    13.99 0.64 -1.3
    0.64 0.1 -0.0988
    -1.3 -0.0988 0.14

    Вектор оценок коэффициентов регрессии равен
    (X T X) -1 X T Y = y(x) =
    13,99 0,64 -1,3
    0,64 0,1 -0,0988
    -1,3 -0,0988 0,14
    *
    73
    563
    1032,5
    =
    34,66
    1,97
    -2,45

    Получили оценку уравнения регрессии: Y = 34.66 + 1.97X 1 -2.45X 2
    Оценка значимости уравнения множественной регрессии осуществляется путем проверки гипотезы о равенстве нулю коэффициент детерминации рассчитанного по данным генеральной совокупности. Для ее проверки используют

    1. Основные определения и формулы

    Множественная регрессия - регрессия между переменными и т.е. модель вида:

    где - зависимая переменная (результативный признак);

    - независимые объясняющие переменные;

    Возмущение или стохастическая переменная, включающая влияние неучтенных в модели факторов;

    Число параметров при переменных

    Основная цель множественной регрессии - построить модель с большим числом факторов, определив при этом влияние каждого из них в отдельности, а также совокупное их воздействие на моделируемый показатель.

    Уравнение множественной линейной регрессии в случае независимых переменных имеет вид а в случае двух независимых переменных - (двухфакторное уравнение).

    Для оценки параметров уравнения множественной регрессии применяют метод наименьших квадратов . Строится система нормальных уравнений:

    Решение этой системы позволяет получить оценки параметров регрессии с помощью метода определителей

    где - определитель системы;

    - частные определители, которые получаются путем замены соответствующего столбца матрицы определителя системы данными правой части системы.

    Для двухфакторного уравнения коэффициенты множественной линейной регрессии можно вычислить по формулам:

    Частные уравнения регрессии характеризуют изолированное влияние фактора на результат, ибо другие факторы закреплены на неизменном уровне. Эффекты влияния других факторов присоединены в них к свободному члену уравнения множественной регрессии. Это позволяет на основе частных уравнений регрессии определять частные коэффициенты эластичности :

    Средние коэффициентами эластичности показывают на сколько процентов в среднем изменится результат при изменении соответствующего фактора на 1%:

    Их можно сравнивать друг с другом и соответственно ранжировать факторы по силе их воздействия на результат.

    Тесноту совместного влияния факторов на результат оценивает коэффиц и ент (индекс) множественной корреляции :

    Величина индекса множественной корреляции лежит в пределах от 0 до 1 и должна быть больше или равна максимальному парному индексу корреляции:

    Чем ближе значение индекса множественной корреляции к 1, тем теснее связь результативного признака со всем набором исследуемых факторов.

    Сравнивая индексы множественной и парной корреляции, можно сделать вывод о целесообразности (величина индекса множественной корреляции существенно отличается от индекса парной корреляции) включения в уравнение регрессии того или иного фактора.

    При линейной зависимости совокупный коэффициент множественной ко р реляции определяется через матрицу парных коэффициентов корреляции:

    где - определитель матрицы парных коэффициентов корреляции;

    - определитель матрицы межфакторной корреляции.

    Частны е коэффициент ы корреляции характеризуют тесноту линейной зависимости между результатом и соответствующим фактором при устранении влияния других факторов. Если вычисляется, например, (частный коэффициент корреляции между и при фиксированном влиянии ), это означает, что определяется количественная мера линейной зависимости между и которая будет иметь место, если устранить влияние на эти признаки фактора

    Частные коэффициенты корреляции, измеряющие влияние на фактора при неизменном уровне других факторов, можно определить как:

    или по рекуррентной формуле:

    Для двухфакторного уравнения:

    или

    Частные коэффициенты корреляции изменяются в пределах от -1 до +1.

    Сравнение значений парного и частного коэффициентов корреляции показывает направление воздействия фиксируемого фактора. Если частный коэффициент корреляции получится меньше, чем соответствующий парныйкоэффициент значит взаимосвязь признаков и в некоторой степени обусловлена воздействием на них фиксируемой переменной И наоборот, большее значение частного коэффициента по сравнению с парным свидетельствует о том, что фиксируемая переменная ослабляет своим воздействием связь и

    Порядок частного коэффициента корреляции определяется количеством факторов, влияние которых исключается. Например, - коэффициент частной корреляции первого порядка.

    Зная частные коэффициенты корреляции (последовательно первого, второго и более высокого порядка), можно определить совокупный коэффициент мн о жественной корреляции :

    Качество построенной модели в целом оценивает коэффициент (индекс) множественной детерминации , который рассчитывается как квадрат индекса множественной корреляции: Индекс множественной детерминации фиксирует долю объясненной вариации результативного признака за счет рассматриваемых в регрессии факторов. Влияние других, не учтенных в модели факторов, оценивается как

    Если число параметров при близко к объему наблюдений, то коэффициент множественной корреляции приблизится к единице даже при слабой связи факторов с результатом. Для того чтобы не допустить возможногопреувеличения тесноты связи, используется скорректированный индекс множественной корреляции , который содержит поправку на число степеней свободы:

    Чем больше величина тем сильнее различия и

    Значимость частных коэффициентов корреляции проверяется аналогично случаю парных коэффициентов корреляции. Единственным отличием является число степеней свободы, которое следует брать равным =--2.

    Значимость уравнения множественной регрессии в целом , так же как и в парной регрессии, оценивается с помощью - критерия Фишера :

    Мерой для оценки включения фактора в модель служит частный -критерий . В общем виде для фактора частный -критерий определяется как

    Для двухфакторного уравнения частные -критерии имеют вид:

    Если фактическое значение превышает табличное, то дополнительное включение фактора в модель статистически оправданно и коэффициент чистой регрессии при факторе статистически значим. Если же фактическое значение меньше табличного, то фактор нецелесообразно включать в модель, а коэффициент регрессии при данном факторе в этом случае статистически незначим.

    Для оценки значимости коэффициентов чистой регрессии по -критерию Стьюдента используется формула:

    где - коэффициент чистой регрессии при факторе

    - средняя квадратическая (стандартная) ошибка коэффициента регрессии которая может быть определена по формуле:

    При дополнительном включении в регрессию нового фактора коэффициент детерминации должен возрастать, а остаточная дисперсия уменьшаться. Если это не так, то включаемый в анализ новый фактор не улучшает модель и практически является лишним фактором. Насыщение модели лишними факторами не только не снижает величину остаточной дисперсии и не увеличивает показатель детерминации, но и приводит к статистической незначимости параметров регрессии по -критерию Стьюдента.

    При построении уравнения множественной регрессии может возникнуть проблема мультиколлинеарности факторов. Считается, что две переменные явно коллинеарны, т.е. находятся между собой в линейной зависимости, если Если факторы явно коллинеарны, то они дублируют друг друга и один из них рекомендуется исключить из регрессии. Предпочтение при этом отдается не фактору, более тесно связанному с результатом, а тому фактору, который при достаточно тесной связи с результатом имеет наименьшую тесноту связи с другими факторами.

    Для оценки мультиколлинеарности факторов может использоваться опред е литель матрицы между факторами . Чем ближе к 0 определитель матрицы межфакторной корреляции, тем сильнее мультиколлинеарность факторов и ненадежнее результаты множественной регрессии. И наоборот, чем ближе к 1 определитель, тем меньше мультиколлинеарность факторов.

    Для применения МНК требуется, чтобы дисперсия остатков была гомоскедастичной. Это означает, что для каждого значения фактора остатки имеют одинаковую дисперсию. Если это условие применения МНК не соблюдается, то имеет место гетероскедастичность . При нарушении гомоскедастичности выполняются неравенства

    Наличие гетероскедастичности можно наглядно видеть из поля корреляции (рис. 9.22).

    Рис. 9.22 . Примеры гетероскедастичности:

    а) дисперсия остатков растет по мере увеличения

    б) дисперсия остатков достигает максимальной величины при средних значениях переменной и уменьшается при минимальных и максимальных значениях

    в) максимальная дисперсия остатков при малых значениях и дисперсия остатков однородна по мере увеличения значений

    Для проверки выборки на гетероскедастичность можно использовать метод Гольдфельда-Квандта (при малом объеме выборки) или критерий Бартлетта (при большом объеме выборки).

    Последовательность применения теста Гольдфельда-Квандта :

    1) Упорядочить данные по убыванию той независимой переменной, относительно которой есть подозрение на гетероскедастичность.

    2) Исключить из рассмотрения центральных наблюдений. При этом где - число оцениваемых параметров. Из экспериментальных расчетов для случая однофакторного уравнения регрессии рекомендовано при =30 принимать =8, а при =60 соответственно =16.

    3) Разделить совокупность из наблюдений на две группы (соответственно с малыми и большими значениями фактора ) и определить по каждой из групп уравнение регрессии.

    4) Вычислить остаточную сумму квадратов для первой и второй групп и найти их отношение где При выполнении нулевой гипотезы о гомоскедастичности отношение будет удовлетворять -критерию Фишера со степенями свободы для каждой остаточной суммы квадратов. Чем больше величина превышает тем более нарушена предпосылка о равенстве дисперсий остаточных величин.

    Если необходимо включить в модель факторы, имеющие два или более качественных уровней (пол, профессия, образование, климатические условия, принадлежность к определенному региону и т.д.), то им должны быть присвоены цифровые метки, т.е. качественные переменные преобразованы в количественные. Такого вида сконструированные переменные называют фиктивными (и с кусственными) переменными .

    К оэффициент регрессии при фиктивной переменной интерпретируется как среднее изменение зависимой переменной при переходе от одной категории к другой при неизменных значениях остальных параметров. Значимость влияния фиктивной переменной проверяется с помощью -критерия Стьюдента.

    2. Решение типовых задач

    Пример 9. 2. По 15 предприятиям отрасли (табл. 9.4) изучается зависимость затрат на выпуск продукции (тыс. ден. ед.) от объема произведенной продукции (тыс. ед.) и расходов на сырье (тыс. ден. ед). Необходимо:

    1) Построить уравнение множественной линейной регрессии.

    2) Вычислить и интерпретировать:

    Средние коэффициенты эластичности;

    Парные коэффициенты корреляции, оценить их значимость на уровне 0,05;

    Частные коэффициенты корреляции;

    Коэффициент множественной корреляции, множественный коэффициент детерминации, скорректированный коэффициент детерминации.

    3) Оценить надежность построенного уравнения регрессии и целесообразность включения фактора после фактора и после

    Таблица 9.4

    x 1

    x 2

    Решение:

    1) В Excel составим вспомогательную таблицу рис. 9.23.

    Рис. 9.23 . Расчетная таблица многофакторной регрессии.

    С помощью встроенных функций вычислим: =345,5; =13838,89; =8515,78; =219,315; =9,37; =6558,08.

    Затем найдем коэффициенты множественной линейной регрессии и оформим вывод результатов как на рис. 9.24.

    Рис. 9.24 . Решение задачи в MS Excel

    Для вычисления значения коэффициента используем формулы

    Формулы для вычисления параметров заносим в ячейки Е 20 , Е 2 1, Е 2 2. Так длявычисления параметра b 1 в Е 20 поместим формулу =(B20*B24-B21*B22)/(B23*B24-B22^2) и получим 29,83. Аналогично получаем значения =0,301 и Коэффициент =-31,25 (рис. 9.25.).

    Рис. 9.25 . Вычисление параметров уравнения множественной регрессии (в с т роке формул формула для расчета b 2) .

    Уравнение множественной линейной регрессии примет вид:

    31,25+29,83+0,301

    Таким образом, при увеличении объема произведенной продукции на 1 тыс. ед. затраты на выпуск этой продукции в среднем увеличатся на 29,83 тыс. ден. ед., а при увеличении расходов на сырье на 1 тыс. ден. ед. затраты увеличатся в среднем на 0,301 тыс. ден. ед.

    2) Для вычисления средних коэффициентов эластичности воспользуемся формулой: Вычисляем: =0,884 и =0,184. Т.е. увеличение только объема произведенной продукции (от своего среднего значения) или только расходов на сырье на 1% увеличивает в среднем затраты на выпуск продукции на 0,884% или 0,184% соответственно. Таким образом, фактор оказывает большее влияние на результат, чем фактор

    Для вычисления парных коэффициентов корреляции воспользуемся функцией «КОРРЕЛ» рис. 9.26.

    Рис. 9.26 . Вычисление парных коэффициентов корреляции

    Значения парных коэффициентов корреляции указывают на весьма тесную связь с и на тесную связь с В то же время межфакторная связь очень сильная (=0,88>0,7), что говорит о том, что один из факторов является неинформативным, т.е. в модель необходимо включать или или

    З начимост ь парных коэффициентов корреляции оценим с помощью -критерия Стьюдента. =2,1604 определяем с помощью встроенной статистической функции СТЬЮДРАСПОБР взяв =0,05 и =-2=13.

    Фактическое значение -критерия Стьюдента для каждого парного коэффициента определим по формулам: . Результат расчета представлен на рис. 9.27.

    Рис. 9.27 . Результат расчета фактических значений -критерия Стьюдента

    Получим =12,278; =7,1896; =6,845.

    Так как фактические значения -статистики превосходят табличные, то парные коэффициенты корреляции не случайно отличаются от нуля, а статистически значимы.

    Получим =0,81; =0,34; =0,21. Таким образом, фактор оказывает более сильное влияние на результат, чем

    При сравнении значений коэффициентов парной и частной корреляции приходим к выводу, что из-за сильной межфакторной связи коэффициенты парной и частной корреляции отличаются довольно значительно.

    Коэффициент множественной корреляции

    Следовательно, зависимость от и характеризуется как очень тесная, в которой =93% вариации затрат на выпуск продукции определяются вариацией учтенных в модели факторов: объема произведенной продукции и расходов на сырье. Прочие факторы, не включенные в модель, составляют соответственно 7% от общей вариации

    Скорректированный коэффициент множественной детерминации =0,9182 указывает на тесную связь между результатом и признаками.

    Рис. 9.28 . Результаты расчета частных коэффициентов корреляции и коэфф и циента множественной корреляции

    3) Оценим надежность уравнения регрессии в целом с помощью -критерия Фишера. Вычислим . =3,8853 определяем взяв =0,05, =2, =15-2-1=12 помощью встроенной статистической функции FРАСПОБР с такими же параметрами.

    Так как фактическое значение больше табличного, то с вероятностью 95% делаем заключение о статистической значимости уравнения множественной линейной регрессии в целом.

    Оценим целесообразность включения фактора после фактора и после с помощью частного -критерия Фишера по формулам

    ; .

    Для этого в ячейку B32 заносим формулу для расчета F x 1 «=(B28- H24^2)*(15-3)/(1-B28) », а в ячейку B 33 формулу для расчета F x 2 «=(B28-H23^2)*(15-3)/(1-B28) », результат вычисления F x 1 = 22,4127, F x 2 = 1,5958. Табличное значение критерия Фишера определим с помощью встроенной функции FРАСПОБР с параметрами =0,05, =1, =12 «=FРАСПОБР(0,05; 1 ;12) », результат - =4,747. Так как =22,4127>=4,747, а =1,5958<=4,747, то включение фактора в модель статистически оправдано и коэффициент чистой регрессии статистически значим, а дополнительное включение фактора после того, как уже введен фактор нецелесообразно (рис. 9.29).

    Рис. 9.29 . Результаты расчета критерия Фишера

    Низкое значение (немногим больше 1) свидетельствует о статистической незначимости прироста за счет включения в модель фактора после фактора Это означает, что парная регрессионная модель зависимости затрат на выпуск продукции от объема произведенной продукции является достаточно статистически значимой, надежной и что нет необходимости улучшать ее, включая дополнительный фактор (расходы на сырье).

    3. Дополнительные сведения для решения задач с помощью MS Excel

    Сводные данные основных характеристик для одного или нескольких массивов данных можно получить с помощью инструмента анализа данных Опис а тельная статистика . Порядок действий следующий:

    1. Необходимо проверить доступ к Пакету анализа . Для этого в ленте выбираем вкладку «Данные», в ней раздел «Анализ» (рис. 9.30.).

    Рис. 9.30 . Вкладка данные диалоговое окно «Анализ данных»

    2. В диалоговом окне «Анализ данных» выбрать Описательная стат и стика и нажать кнопку «ОК», в появившемся диалоговом окне заполните необходимые поля (рис. 9.31):

    Рис. 9.31 . Диалоговое окно ввода параметров инструмента
    « Описательная статистика »

    Входной интервал - диапазон, содержащий данные результативного и объясняющих признаков;

    Группирование - указать, как расположены данные (в столбцах или строках);

    Метки - флажок, который указывает, содержит ли первая строка названия столбцов или нет;

    Выходной интервал - достаточно указать левую верхнюю ячейку будущего диапазона;

    Новый рабочий лист - можно задать произвольное имя нового листа, на который будут выведены результаты.

    Для получения информации Итоговой статистики, Уровня наде ж ности, -го наибольшего и наименьшего значений нужно установить соответствующие флажки в диалоговом окне.

    Получаем следующую статистику (рис. 2.10).