Тепловое расширение твердых тел. Тепловое расширение

При равномерном нагревании однородного тела оно не разрушается, но неравномерный нагрев может вызвать значительные механические напряжения (внутренние нагрузки). Например, стеклянная бутылка или стакан из толстого стекла могут лопнуть, если налить в них горячей воды. Почему? В первую очередь происходит нагрев внутренних частей сосуда, соприкасающихся с горячей водой. Они расширяются и оказывают сильное давление на внешние холодные части этого же сосуда. Тонкий же стакан не лопается при наливании в него горячей воды, так как его внутренняя и внешняя части быстро и почти одномоментно прогреваются.

Разнородные материалы, подвергающиеся периодическому нагреванию и охлаждению, следует соединять вместе только тогда, когда их размеры при изменении температуры меняются одинаково (вещества имеют аналогичные коэффициенты). Это особенно важно при больших размерах изделий. Так, например, железо и бетон при нагревании расширяются одинаково. Именно поэтому широкое распространение получил железобетон – затвердевший бетонный раствор, залитый в стальную решётку. Если бы железо и бетон расширялись по-разному, то в результате суточных и годовых колебаний температуры железобетонное сооружение вскоре бы разрушилось.

Ещё несколько примеров. Металлические проводники, впаянные в стеклянные баллоны электроламп и радиоламп, делают из сплава железа и никеля, имеющего такой же коэффициент расширения, как и стекло, иначе при нагревании металла стекло треснуло бы. Эмаль, которой покрывают посуду, и металл, из которого эта посуда изготовляется, должны иметь одинаковые коэффициенты линейного расширения. В противном случае эмаль будет лопаться при нагревании и охлаждении покрытой ею посуды.

Тепловое расширение тел находит широкое применение в технике. Приведем лишь несколько примеров. Две разнородные пластины (например, железная и медная), сваренные или «склёпанные» вместе, образуют так называемую биметаллическую пластину. При нагревании такие пластины изгибаются вследствие того, что одна расширяется сильнее другой. Та из полосок (медная), которая расширяется больше, оказывается всегда с выпуклой стороны.

Это свойство биметаллических пластин широко используется для измерения температуры и её регулирования. Металлический термометр имеет спираль, сделанную из двух полос различных металлов, сваренных (или склёпанных) друг с другом. Один из этих металлов расширяется при нагревании сильнее, чем другой. Вследствие одностороннего расширения спираль развёртывается, и указатель смещается по шкале вправо. При охлаждении спираль снова скручивается и указатель отходит по шкале влево.


(C) 2012. Савинкова Галина Львовна (г. Самара)

Простые опыты и наблюдения убеждают нас, что при повышении температуры размеры тел немного увеличиваются, а при охлаждении - уменьшаются до прежних размеров. Так, например, сильно разогретый болт не входит в резьбу, в которую он свободно входит, будучи холодным. Когда болт охладится, он снова входит в резьбу. Телеграфные провода в жаркую летнюю погоду провисают заметно больше, чем во время зимних морозов. Увеличение провисания, а следовательно, и длины натянутых проволок при нагревании легко воспроизвести на опыте, изображенном на рис. 353. Нагревая натянутую проволоку электрическим током, мы видим, что она заметно провисает, а по прекращении нагревания снова натягивается.

Рис. 353. При нагревании электрическим током проволока удлиняется и провисает; по выключении тока она принимает прежнее положение

При нагревании увеличиваются не только длина тела, нотакже и другие линейные размеры. Изменение линейных размеров тела при нагревании называют линейным расширением.

Если однородное тело (например, стеклянная трубка) нагревается одинаково во всех частях, то оно, расширяясь, сохраняет свою форму. Иное происходит при неравномерном нагревании. Рассмотрим такой опыт. Стеклянная трубка расположена горизонтально, и один ее конец закреплен. Если трубку нагревать снизу, как показано на рис. 354, то верхняя ее часть остается вследствие плохой теплопроводности стекла более холодной; при этом трубка изгибается кверху. Легко понять, что нижняя половина изогнутой трубки сжата, так как она не может расширяться в той мере, в какой расширялась бы, если бы не составляла одно целое с верхней половиной. Верхняя половина, наоборот, растянута.

Рис. 354. Стеклянная трубка при нагревании ее снизу заметно изгибается вверх

Таким образом, при неравномерном нагревании тел в них возникают напряжения, которые могут повести к их разрушению, если напряжения сделаются слишком большими. Так, стеклянная посуда в первый момент, когда в нее налита горячая вода, находится в напряженном состоянии и иногда лопается. Это происходит вследствие того, что сперва прогреваются и расширяются внутренние части, которые и растягивают при этом внешнюю поверхность посуды. Такого напряжения при нагревании можно избежать, если взять посуду со столь тонкими стенками, что они быстро прогреваются по всей толщине (химическая посуда).

По сходной причине лопается обычная стеклянная посуда, если пытаться греть в ней жидкости на огне или на электрической плитке. Существуют, однако, специальные сорта стекла (так называемое кварцевое стекло, содержащее до 96% кварца, ), которые расширяются при нагревании настолько мало, что напряжения при неравномерном нагревании посуды, сделанной из такого стекла, не опасны. В кастрюле из кварцевого стекла можно кипятить воду.

Линейное расширение различных материалов при одном и том же повышении температуры различно. Это видно, например, из такого опыта: две разнородные пластинки (например, железная и медная) склепывают между собой в нескольких местах (рис. 355, а). Если при комнатной температуре пластинки прямые, то при нагревании они искривятся, как изображено на рис. 355, б. Это показывает, что медь расширяется в большей мере, чем железо. Из этого опыта следует также, что при изменениях температуры тела, состоящего из нескольких различно расширяющихся частей, в нем тоже появляются внутренние напряжения. В опыте, изображенном на рис. 355, медная пластинка сжата, а железная - растянута. По причине неодинакового расширения железа и эмали возникают напряжения в эмалированной железной посуде; при сильном нагреве эмаль иногда отскакивает.

Рис. 355. а) Пластинка, склепанная из медной и железной полосок, в холодном состоянии, б) Та же пластинка в нагретом состоянии (для наглядности изгиб показан преувеличенным)

Напряжения, появляющиеся в твердых телах вследствие теплового расширения, могут быть очень большими. Это необходимо принимать во внимание во многих областях техники. Бывали случаи, когда части железных мостов, склепанные днем, охлаждаясь ночью, разрушались, срывая многочисленные заклепки. Во избежание подобных явлений, принимают меры к тому, чтобы части сооружений при изменении температуры расширялись или сжимались свободно. Например, железные паропроводы снабжают пружинящими изгибами в виде петель (компенсаторы, рис. 356).

Рис. 356. Компенсатор на паропроводе дает возможность трубам и расширяться

Увеличение линейных размеров сопровождается увеличением объема тел (объемное расширение тел). О линейном расширении жидкостей говорить нельзя, так как жидкость не имеет определенной формы. Объемное же расширение жидкостей нетрудно наблюдать. Наполним колбу подкрашенной водой или другой жидкостью и заткнем ее пробкой со стеклянной трубкой так, чтобы жидкость вошла в трубку (рис. 357, а). Если к колбе поднести снизу сосуд с горячей водой, то в первый момент жидкость в трубке опустится, а затем начнет подниматься (рис. 357, б и в). Понижение уровня жидкости в первый момент указывает на то, что сперва расширяется сосуд, а жидкость еще не успела прогреться. Затем прогревается и жидкость.

Рис. 357. а) Подкрашенная вода вошла из колбы в пробку, б) К колбе снизу подносится сосуд с горячей водой. В первый момент погружения колбы жидкость в трубке опускается. в) Уровень в трубке через некоторое время устанавливается выше, чем до нагревания колбы

Повышение ее уровня показывает, что жидкость расширяется в большей мере, чем стекло. Различные жидкости расширяются при нагревании по-разному: например, керосин расширяется сильнее, чем вода.

Если жидкость нагревается в замкнутом сосуде, который препятствует ее расширению, то в ней, так же как и в твердых телах, появляются огромные напряжения (силы давления), действующие на стенки сосуда и могущие их разрушить. Поэтому системы труб водяного отопления всегда снабжаются расширительным баком, присоединенным к верхней части системы и сообщающимся с атмосферой (рис. 358). При нагревании воды в системе труб часть воды переходит в расширительный бак, и этим исключается напряженное состояние воды и труб.

Рис. 358. Схема устройства водяного отопления в доме. На чердаке помещен расширительный бак 1, из которого вода стекает по трубке 2

195.1. Как меняется диаметр отверстия в чугунной кухонной печи, когда печь нагревается?

195.2. Когда балалайку выносят из теплого помещения на мороз, ее стальные струны становятся более натянутыми. Какое заключение можно вывести отсюда о различии в расширении стали и дерева?

195.3. Вроялях стальные струны натягиваются на железную раму. Меняется ли натяжение струн при настолько медленном изменении температуры, что рама успевает принять ту же температуру, что и струны (железо расширяется почти в той же степени, что и сталь)?

195.4. Для впайки электродов в электрическую лампу употребляют сплав «платинид», расширяющийся при нагревании так же, как стекло. Что может случиться, если впаять в стекло медную проволочку (медь расширяется заметно сильнее стекла)?

195.5. Как изменился бы опыт, изображенный на рис. 357, если бы колба была сделана из кварцевого стекла?

195.6. В технике часто пользуются биметаллическими пластинками, состоящими из двух тонких пластинок разных металлов, приваренных друг к другу по всей поверхности соприкосновения. На рис. 359 показана упрощенная схема термореле - прибора, автоматически выключающего на небольшой срок электрический ток, если сила тока почему-либо превысит допустимое значение: 1 - биметаллическая пластинка, 2 - небольшой нагревательный элемент, при допустимой силе тока нагревающийся слишком слабо для срабатывания реле, 3 - контакт. Разберитесь в действии термореле. С какой стороны пластинки 1 должен находиться металл, расширяющийся в большей мере?

Рис. 359. Упрощенная схема термореле

При нагревании тел растет средняя кинетическая энергия поступательного движения молекул и среднее расстояние между молекулами. Поэтому все вещества при нагревании расширяются, а при охлаждении сжимаются. Различают линейное и объемное расширение.

Изменение одного определенного размера твердого тела при изменениях температуры называетсялинейным расширением (или сжатием).

Где – длина стержня при 0 0 ,

Коэффициент линейного расширения. Размерность = О С -1 .

Длина тела при любой температуре t: ;

При объемном расширении увеличивается объем: , где: – объем тела при 0 0 C.

Объем тела при любой температуре t: , где:

Коэффициент объемного расширения;

Экспериментально установлено, что . Поэтому .

Аналогично для площади поверхности твердого тела: .

В жидкостях есть одно замечательное исключение: вода при нагревании от 0 0 C до +4 0 C сжимается, а при охлаждении от +4 0 C до 0 0 C – расширяется. Коэффициент объемного расширения воды сильно меняется при изменении температуры.

Примеры тепловых расширений:

Вода при замерзании расширяется и разрывает горные породы, металлические трубы и другие технические конструкции.

В автоматике применяются биметаллические пластины, использующие различие коэффициентов линейного расширения каждой из двух пластин. При нагревании биметаллическая пластина теряет устойчивость, нажимает на переключатель, в результате чего исполнительный механизм срабатывает.

Тепловые расширения важно учитывать при прокладывании рельсов, натягивании проводов, сооружении мостов и т.д. Выводы из электроламп и радиоламп производят из материала, у которого коэффициент линейного расширения близок к коэффициенту линейного расширения стекла.

Плавление и кристаллизация.
Диаграмма фазовых состояний

Переход вещества из твердого состояния в жидкоесостояние называется плавлением, а переход из жидкого состояния в твердое –отвердеванием или кристаллизацией. Плавление и отвердевание происходит при одной и той же температуре, называемойтемпературой плавления. Давление практически не влияет на величину температуры плавления. Температуру плавления вещества при нормальном атмосферном давлении называютточкой плавления.

При плавлении твердого тела увеличивается расстояния между частицами, образующими кристаллическую решетку, и происходит разрушение самой решетки. У подавляющего большинства веществ объем при плавлении увеличивается, а при отвердевании уменьшается.

Область, в которой вещество однородно по всем физическим и химическим свойствам, называется фазой состояния этого вещества. Жидкая и твердая фазы вещества при одинаковой температуре могут оставаться в равновесии сколь угодно долгое время (лед и вода при 0 0 C). Поэтому пока все вещество не расплавится, его температура остается неизменной , равной температуре плавления.

Теплотой плавления называется количество теплоты, которое необходимо подвести к телу массой m, находящемуся при температуре плавления , чтобы его расплавить.

Где – удельная теплота плавления.

1 Дж/кг.

На рисунке 34 показаны графики изменения температуры вещества при плавлении и отвердевании. Отрезок (рисунок 34а) выражает количество теплоты, полученное веществом при нагревании в твердом состоянии (от до T ПЛ), отрезок - при плавлении и отрезок - при нагревании в жидком состоянии. Отрезок (рисунок 34б) выражает количество теплоты, отданное веществом при охлаждении в жидком состоянии (от до ), отрезок - при отвердевании и отрезок - при охлаждении в твердом состоянии.

Рисунок 34. Графики изменения температуры вещества при плавлении и отвердевании

Многие твердые вещества обладают запахом. Это доказывает, что твердые вещества могут переходить в газообразное состояние, минуя жидкое. Испарение твердых тел называетсявозгонкой или сублимацией (от латинского “сублимате” - возносить). В пищевой промышленности используется обладающий таким свойством “сухой лед” (СО 2). Возможен и обратный процесс – рост кристаллов из газообразного вещества (лед на окнах, зарастание перемычек ПЗУ).

Для каждого вещества можно составить диаграмму состояний в координатах Р и Т (рисунок 35), на основании которой можно легко определить, в каком состоянии будет находиться это вещество при тех или иных внешних условиях. Каждая точка диаграммы соответствует равновесному состоянию вещества, в которых оно может находиться сколь угодно долго.

Кривая KC – зависимость давления насыщающего пара от температуры. Точка K – критическая точка.

Кривая CA – зависимость от температуры давления насыщающих паров, находящихся в равновесном состоянии с поверхностью твердого тела.

Кривая KC – линия равновесия жидкой и газообразной фаз. Прямая BC – линия равновесия жидкой и твердой фаз. Кривая AC – линия равновесия твердой и газообразной фаз.

Точка C изображает равновесие между всеми тремя фазами, ее называют тройной точкой. У гелия нет тройной точки.

Контрольные вопросы:

1. Расскажите о тепловом расширении твердых тел.

2. Что такое плавление и кристаллизация? Что такое теплота плавления?

3. Что такое возгонка вещества?

4. Расскажите о диаграмме состояний вещества.

Тема2.1.6 Линейное и объемное расширение твердых тел при нагревании.

1. Тепловое расширение.

2. Линейное расширение.

3. Объемное расширение.

4. Тепловое расширение жидкостей.

Литература: Дмитрієва В.Ф. Фізика: Навчальний посібник для студентів навчальних закладів І-ІІ рівнів акредитації. – К: Техніка, 2008. – 648 с. (§81)

1. Тепловым расширением называется увеличение линейных размеров тела и его объема, которое происходит с повышением температуры.

В процессе нагревания твердого тела увеличиваются средние расстояния между атомами.

2. Величина, равная отношению относительного удлинения тела к изменению его температуры на ∆Т = Т – Т 0 , называется температурным коэффициентом расширения:

Из этой формулы определяем зависимость длины твердого тела от температуры:

l = l 0 (1+α∆Т)

3. С возрастанием температуры изменяется и объем тела. В пределах не очень большого температурного интервала объем увеличивается пропорционально температуре. Объемное расширение твердых тел характеризуется температурным коэффициентом объемного расширения β – величиной, равной отношению относительного увеличения объема ∆V/V 0 тела к изменению температуры ∆Т:

; V = V 0 (1+ β∆Т).

4. В процессе нагревания жидкости возрастает средняя кинетическая энергия хаотичного движения ее молекул. Это ведет к увеличению расстояния между молекулами, а значит, и к увеличению объема. Тепловое расширение жидкостей, как и твердых тел, характеризуется температурным коэффициентом объемного расширения. Объем жидкости при нагревании определяют по формуле: V = V 0 (1+ β∆Т). Если объем тел увеличивается, то уменьшается их плотность: ρ = ρ 0 /(β∆Т)

Объем большинства тел в процессе плавления увеличивается, а в процессе затвердевания уменьшается, при этом изменяется и плотность вещества.

Плотность вещества при плавлении уменьшается, а при затвердевании увеличивается. Но есть такие вещества, как, например, кремний, германий, висмут, плотность которых при плавлении увеличивается, а при затвердевании уменьшается. К таким веществам принадлежит и лед (вода) .

Контрольные вопросы и задачи

1 Когда происходит тепловое расширение тел?

2 Что называется температурным коэффициентом расширения?

3 Чем характеризуется объемное расширение твердых тел?

4 Чем характеризуется тепловое расширение жидкостей?

5 Почему при нагревании и охлаждении железобетонных конструкций железо в них не отделяется от бетона?

ПРИТЕРТЫЕ ПРОБКИ

Всем хорошо известно, что при нагревании тела расширяются.
Иногда в стеклянном флаконе притертая пробка так туго сидит, что ее не вытащишь. Очень большое усилие применить опасно — можно отломить горлышко и порезать руки. Поэтому прибегают к испытанному способу: к горлышку подносят горящую спичку, а флакон поворачивают, чтобы горлышко равномерно прогрелось.


Пламени одной спички достаточно, чтобы стекло горлышка от нагревания расширилось, а пробка, не успевшая нагреться, легко вынулась.

УДЛИНЕНИЕ ИГОЛКИ

Вырежь из пробки, из дощечки или выпили из фанеры такую дужку, как у нас на рисунке. Иглу воткни острием в целый конец дужки (на рисунке — левый), а ушком свободно положи на правый, срезанный. Подбери другую иголку, потоньше. Ее острие должно пройти сквозь ушко первой, горизонтальной иглы да еще войти в дерево на 2— 3 мм.

Эта вертикальная игла будет стрелкой нашего приборчика. Чтобы ее движение было заметнее, рядом воткни вторую, контрольную.

Контрольная иголка должна быть параллельна иголке-стрелке.
Нагрей теперь горизонтальную иглу на свече или спичке.
Она удлинится, ушко поползет вправо и отклонит вертикальную стрелку!


ТЕПЛОВЫЕ ВЕСЫ

Опыт 1

Для этого возьмите прямой кусок медной проволоки толщиной 1—2 миллиметра, длиной около 40 сантиметров. Воткните конец этой проволоки в отверстие, просверленное в деревянной палке примерно такой же длины, и подвесьте получившееся коромысло тепловых весов за середину на нитке. Уравновесьте его.


Может быть, для этого нужно будет подрезать деревянную палочку или, наоборот, подвесить к ней небольшой груз, например кусочки бумаги. Можно добиться равновесия и передвигая точку подвеса коромысла. Осветите коромысло настольной лампой, чтобы на стене один его конец, например медный, давал тень. На этом месте укрепите на стене белую бумагу и отметьте карандашом положение тени, когда коромысло висит строго горизонтально. Затем возьмите две зажженные свечи и подставьте их под медную проволоку. Когда она хорошо нагреется, она удлинится, и равновесие нарушится. Потому что нарушилось соотношение плеч. Конец проволоки опустится на несколько миллиметров. Это будет хорошо видно по тени на стене.

Если свечи убрать, медная проволока остынет, станет короче, то есть такой, какой была до нагревания, и коромысло наших тепловых весов, вернее, его тень встанет на свою метку.

Опыт 2

Красивый опыт можно сделать со стальной вязальной спицей.
Пропусти ее сквозь пробку (или обрезок моркови). По обе стороны спицы воткни в эту пробку две булавки, как показано на рисунке. Они должны стоять острыми концами на донышке стакана.


На концы спицы насади по морковке. Лучше не серединкой, а так, чтобы основная часть каждой морковки была внизу. Это сделает равновесие спицы более устойчивым: ведь центр тяжести опустился ниже! Получилось что-то вроде весов, Передвигая морковки, добейся, чтобы спица стояла совершенно горизонтально.

Получилось?
Ну, а теперь поставь под одно плечо этих весов зажженную свечу.
Внимание… Смотри-ка: нагретое плечо опустилось! Убери свечу — и через некоторое время равновесие восстановится.

В чем здесь дело?
Неужели одна сторона спицы от нагревания стала тяжелее? Нет, конечно. Просто она стала длиннее, и морковка «отъехала» дальше от точки опоры. Поэтому она и перетянула, как птичка перетягивала бегемота! А когда спица остыла, она снова укоротилась, и все стало по-прежнему.


РАЗЪЕДИНЕНИЕ СТАКАНОВ

Все тела при нагревании расширяются, а при охлаждении сжимаются - закон!
Дома мы то и дело сталкиваемся с проявлениями коварного закона: то треснет стакан, в который налили кипяток, то сожмет давлением завинчивающуюся крышку на банке так, что и не открыть, то лопнут от сильного мороза водопроводные трубы (в последнем примере речь идет о «неправильном» поведении воды, ведь она расширяется и при замерзании).
Но лучше с этим законом дружить!


Опыт

Как разъединить два стакана, вставленные один в другой?

Вчера их вымыли горячей водой да так и оставили. И они «схватились» так, что скорее разобьются, чем разделятся. Налейте в верхний стакан холодной воды, а второй опустите в миску с горячей водой. Несколько мгновений — и жестом фокусника вы их разделите.

РЖАВЫЙ ВИНТ

Шляпку заржавевшего винта, который никак не поддается отвертке, нагрейте паяльником. Дайте винту остыть и повторите попытку.

От резкого расширения, а затем сжатия частицы ржавчины и других посторонних веществ на поверхности резьбы должны отделиться. Если это не поможет сразу, повторите нагрев.

ДОСКА ВДРЕБЕЗГИ

Если вы хотели бы продемонстрировать свою силу, то есть показать, как под ребром вашей ладони разлетается в щепки толстая доска, выдаем тайну одного циркового артиста: перед выступлением он вымачивал подготовленную доску в воде и выставлял ее на мороз. Потом давал оттаять, снова мочил и опять замораживал. И так несколько раз.

Как вы догадываетесь, замерзающая вода рвала древесные клетки, и доска становилась рыхлой, некрепкой. Разломать ее резким ударом ладони нетрудно. Впрочем, обманывать нехорошо…
Кстати, что надо сделать с бубликом, чтобы увеличить его дырку?

РАСШИРЕНИЕ ШАРИКА

Проделаем опыт с расширением от нагревания твердого предмета. Хорошо бы найти металлический шарик от бильярда или от шарикового подшипника. По его размеру подыщите какую-нибудь металлическую пластинку с отверстием. Если диаметр отверстия меньше шарика, круглым напильником расширьте его.


Добейтесь, чтобы шарик, если его положить на отверстие, проваливался, не задерживаясь в нем. Но и зазора между шариком и отверстием не должно быть. Положите шарик на горячую плиту. Если плита газовая, то положите на металлический кружок, который есть у каждой хозяйки для предохранения некоторых блюд от подгорания. Когда шарик хорошо нагреется, возьмите его плоскогубцами и быстро положите на отверстие в пластинке, заранее укрепленной над металлической коробочкой. Шарик от нагревания увеличится в размере и в отверстии будет держаться до тех пор, пока не остынет. Когда остынет, сам проскочит сквозь него.

РАСШИРЕНИЕ МОНЕТЫ

Нагрейте монету и снова попробуйте ее пропустить между пластинками. У вас ничего не получится до тех пор, пока монета не остынет и не примет прежние размеры.


Еще проще можно проделать опыт при помощи двух гвоздей, забитых в дощечку Расстояние между гвоздями должно равняться диаметру неразогретого пятачка.