Скорость фотосинтеза зависит от лимитирующих. Процесс фотосинтеза. Влияние внешних условий на интенсивность процесса фотосинтеза

«Скорость распространения звука» - Как отражается на здоровье человека систематическое действие громких звуков? Что называется чистым тоном? Вывод: Наличие среды- необходимое условие распространения звука. Скорость звука. Назовите единицы громкости и уровня громкости звука. Опытное подтверждение. Распространение звука. Скорость звука в воздухе » 330 м/с.

«Скорость чтения» - В 6 классе – падает более сильно. Хоровое чтение. «Речевые зарядки» (На горке у речки уродилась гречка). При чтении будь внимателен к каждому слову. Выбирать Вам, а не ребёнку! «5» - 150 «4» - 120 «3» - 90. Расширение поля зрения. В 3 классе – 60 – 70% хорошистов. Экономический аспект. Старайся понять, о чём читаешь.

«Скорость реакции» - Лабораторная работа. Отчёт групп. Влияние концентрации реагирующих веществ (для гомогенных систем) 3ряд. Что такое энергия активации? Гомогенные системы: Газ + газ Жидкость + жидкость. Катализаторы и катализ. Почему не все столкновения между частицами приводят к осуществлению реакций? Определите тип реагирующих систем.

«Космическая скорость» - Окружность. Эллипс. Приветствие на 58 языках Земли. Гипербола. Звуки: голоса птиц и зверей, шум моря, дождя, ветра. Третья космическая скорость. Траектория движения тел движущихся с малой скоростью. Первый полет человека в космос. Запущен в 1977году. Первая космическая скорость. Изображение мужчины и женщины.

«Фотосинтез и дыхание растений» - Опыт доказывает испарение воды листьями. Какой ученый внес большой вклад в изучение процессов фотосинтеза? Какие приспособления выработали растения, обитающие в условиях недостатка влаги? Для улучшения дыхания корней проводят рыхление почвы. Что используют для дыхания все живые организмы? Чем питаются все живые организмы?

«Скорость звука» - Частое посещение дискотек и чрезмерное увлечение аудио плеерами. Формулы нахождения скорости звука. Высота звука Тембр звука Громкость звука. В вакууме звука нет! В каком диапазоне человеческое ухо способно воспринимать упругие волны? Животные в качестве звука воспринимают волны иных частот. Новый материал.

Публикация статьи произведена при поддержке компании "Компьютерные курсы Сампад". Компания "Компьютерные курсы Сампад" предлагает записаться на курсы создания интернет-магазина в Новосибирске. Опытные педагоги компании в самые быстрые сроки обеспечат обучение PHP программированию, что позволит создавать сайты любой сложности. Узнать больше о предлагаемых курсах, прочесть отзывы клиентов, заказать обратный звонок и подать онлайн заявку на обучение можно на официальном сайте компании "Компьютерные курсы Сампад", который располагается по адресу http://pc-nsk.ru/

Зеленый лист – источник жизни на нашей планете. Если бы не зеленые растения, на Земле не было бы ни животных, ни людей. Так или иначе, растения служат источником пищи для всего животного мира.

Человек использует энергию не только солнечных лучей, падающих на землю сейчас, но и тех, что падали на нее десятки и сотни миллионов лет назад. Ведь и уголь, и нефть, и торф – химически измененные остатки растений и животных, живших в те далекие времена.

В последние десятилетия к проблеме фотосинтеза приковано внимание ведущих специалистов ряда отраслей естествознания, ее различные аспекты всесторонне и глубоко исследуются во многих лабораториях мира. Интерес определяется прежде всего тем, что фотосинтез составляет основу энергообмена всей биосферы.

Интенсивность фотосинтеза зависит от многих факторов. Интенсивность света , необходимая для наибольшей эффективности фотосинтеза, у различных растений различна. У теневыносливых растений максимум активности фотосинтеза достигается примерно при половине полного солнечного освещения, а у светолюбивых растений – почти при полном солнечном освещении.

У многих теневыносливых растений не развивается палисадная (столбчатая) паренхима в листьях, и имеется только губчатая (ландыш, копытень). Кроме того, эти растения имеют более крупные листья и более крупные хлоропласты.

Также на интенсивность фотосинтеза влияет температура окружающей среды . Наибольшая интенсивность фотосинтеза наблюдается при температуре 20–28 °С. При дальнейшем повышении температуры интенсивность фотосинтеза падает, а интенсивность дыхания возрастает. Когда интенсивности фотосинтеза и дыхания совпадают, говорят о компенсационном пункте .

Компенсационный пункт изменяется в зависимости от интенсивности света, повышения и понижения температуры. Например, у холодостойких бурых морских водорослей он соответствует температуре около 10 °С. Температура влияет, в первую очередь, на хлоропласты, у которых в зависимости от температуры изменяется структура, что хорошо видно в электронном микроскопе.

Очень большое значение для фотосинтеза имеет содержание углекислого газа в окружающем растение воздухе. Средняя концентрация углекислоты в воздухе составляет 0,03% (по объему). Понижение содержания углекислого газа неблагоприятно влияет на урожай, а его повышение, например до 0,04% может повысить урожай почти в 2 раза. Более значительное повышение концентрации вредно для многих растений: например, при содержании углекислого газа около 0,1% растения томатов заболевают, у них начинают скручиваться листья. В оранжереях и теплицах можно повысить содержание углекислого газа, выпуская его из специальных баллонов или давая испаряться сухой углекислоте.

Свет разных длин волн также по-разному влияет на интенсивность фотосинтеза. Впервые интенсивность фотосинтеза в различных лучах спектра исследовал физик В. Добени, показавший в 1836г., что скорость фотосинтеза в зеленом листе зависит от характера лучей. Методические погрешности при проведении эксперимента привели его к неправильным выводам. Ученый поместил отрезок побега элодеи в пробирку с водой срезом вверх, освещал пробирку, пропуская солнечный свет через цветные стекла или окрашенные растворы, и учитывал интенсивность фотосинтеза по количеству пузырьков кислорода, отрывающихся с поверхности среза за единицу времени. Добени пришел к выводу, что интенсивность фотосинтеза пропорциональна яркости света, а наиболее яркими лучами в то время считались желтые. Этой же точки зрения придерживался и Джон Дрепер (1811–1882), который изучал интенсивность фотосинтеза в различных лучах спектра, испускаемых спектроскопом.

Роль хлорофилла в процессе фотосинтеза доказал выдающийся российский ботаник и физиолог растений К.А. Тимирязев. Проведя в 1871–1875 гг. серию опытов, он установил, что зеленые растения наиболее интенсивно поглощают лучи красной и синей части солнечного спектра, а не желтые, как это считалось до него. Поглощая красную и синюю часть спектра, хлорофилл отражает зеленые лучи, из-за чего и кажется зеленым.

На основании этих данных немецкий физиолог растений Теодор Вильгельм Энгельман в 1883 г. разработал бактериальный метод изучения ассимиляции углекислого газа растениями.

Он предположил, что если поместить в каплю воды клетку зеленого растения вместе с аэробными бактериями и осветить их разноокрашенными лучами, то бактерии должны концентрироваться у тех участков клетки, в которых сильнее всего разлагается углекислый газ и выделяется кислород. Чтобы проверить это, Энгельман несколько усовершенствовал световой микроскоп, укрепив над зеркальцем призму, которая разлагала солнечный свет на отдельные составляющие спектра. В качестве зеленого растения Энгельман использовал зеленую водоросль спирогиру, крупные клетки которой содержат длинные спиральные хроматофоры.

Поместив в каплю воды на предметном стекле кусочек водоросли, Энгельман внес туда же немного аэробных бактерий, после чего, рассмотрел препарат под микроскопом. Оказалось, что в отсутствии призмы приготовленный препарат освещался ровным белым светом, и бактерии равномерно распределялись вдоль всего участка водоросли. В присутствии призмы отраженный от зеркальца луч света преломлялся, освещая участок водоросли под микроскопом светом с разной длиной волны. Спустя несколько минут, бактерии сконцентрировались на тех участках, которые были освещены красным и синим светом. На основании этого Энгельман сделал вывод о том, что разложение углекислого газа, (а, значит, и выделение кислорода) у зеленых растений наблюдается в дополнительных к основной окраске (т.е. зеленой) лучах – красных и синих.

Данные, полученные на современном оборудовании, полностью подтверждают результаты, полученные Энгельманом более 120 лет назад.

Поглощенная хлорофиллом световая энергия принимает участие в реакциях первого и второго этапов фотосинтеза; реакции третьего этапа являются темновыми, т.е. происходит без участия света. Измерения показали, что процесс восстановления одной молекулы кислорода требует минимум восьми квантов световой энергии. Таким образом, максимальный квантовый выход фотосинтеза, т.е. число молекул кислорода, соответствующее одному кванту поглощенной растением световой энергии, составляет 1/8, или 12,5%.

Р.Эмерсон с сотрудниками определили квантовый выход фотосинтеза при освещении растений монохроматическим светом различной длины волны. При этом установлено, что выход остается постоянным на уровне 12% в большей части видимого спектра, но резко снижается вблизи дальней красной области. Это снижение у зеленых растений начинается при длине волны 680 нм. При длине больше 660 нм свет поглощает только хлорофилл a ; хлорофилл b имеет максимум поглощения света при 650 нм, а при 680 нм практически свет не поглощает. При длине волны больше, чем 680 нм, квантовый выход фотосинтеза может быть доведен до максимальной величины 12% при условии, что растение одновременно будет освещаться также светом с длиной волны 650 нм. Иначе говоря, если свет, поглощаемым хлорофиллом а дополняется светом, поглощаемый хлорофиллом b , то квантовый выход фотосинтеза достигает нормальной величины.

Усиление интенсивности фотосинтеза при одновременном освещении растения двумя лучами монохроматического света различной длины волны по сравнению с его интенсивностью, наблюдаемой при раздельном освещении этими же лучами, получило название эффекта Эмерсона . Опыты с различными комбинациями дальнего красного света и света с более короткой длиной волны над зелеными, красными, синезелеными и бурыми водорослями показали, что наибольшее усиление фотосинтеза наблюдается в том случае, если второй луч с более короткой длиной волны поглощается вспомогательнымих пигментами.

У зеленых растений такими вспомогательными пигментами являются каротиноиды и хлорофилл b , у красных водорослей – каротиноиды и фикоэритрин, у синезеленых – каротиноиды и фикоцианин, у бурых водорослей – каротиноиды и фукоксантин.

Дальнейшее изучение процесса фотосинтеза привело к заключению, что вспомогательные пигменты передают от 80 до 100% поглощенной ими световой энергии хлорофиллу а . Таким образом, хлорофилл а аккумулирует световую энергию, поглощаемую растительной клеткой, и затем использует ее в фотохимических реакциях фотосинтеза.

Позже было обнаружено, что хлорофилл а присутствует в живой клетке в виде форм с различными спектрами поглощения и различными фотохимическими функциями. Одна форма хлорофилла а , максимум поглощения у которой соответствует длине волны 700 нм, принадлежит к пигментной системе, получившей название фотосистема I , вторая форма хлорофилла а с максимумом поглощения 680 нм, принадлежит к фотосистеме II.

Итак, в растениях была открыта фотоактивная пигментная система, особенно сильно поглощающая свет в красной области спектра. Она начинает действовать уже при ничтожной освещенности. Кроме того, известна и другая регуляторная система, которая избирательно поглощает и использует для фотосинтеза синий цвет. Эта система работает при достаточно сильном свете.

Установлено также, что фотосинтетический аппарат одних растений в значительной степени использует для фотосинтеза красный свет, других – синий.

Для определения интенсивности фотосинтеза водных растений можно использовать метод подсчета пузырьков кислорода. На свету в листьях происходит процесс фотосинтеза, продуктом которого является кислород, накапливающийся в межклетниках. При срезании стебля избыток газа начинает выделяться с поверхности среза в виде непрерывного тока пузырьков, быстрота образования которых зависит от интенсивности фотосинтеза. Данный метод не отличается большой точностью, но зато прост и дает наглядное представление о зависимости процесса фотосинтеза от внешних условий.

Опыт 1. Зависимость продуктивности фотосинтеза от интенсивности света

Материалы и оборудование : элодея; водные растворы NaHCO 3 , (NH 4) 2 CO 3 или минеральная вода; отстоявшаяся водопроводная вода; стеклянная палочка; нитки; ножницы; электролампа мощностью 200 Вт; часы; термометр.

1. Для опыта отбирали здоровые побеги элодеи длиной около 8 см интенсивного зеленого цвета с неповрежденной верхушкой. Их подрезали под водой, привязывали ниткой к стеклянной палочке и опускали верхушкой вниз в стакан с водой комнатной температуры (температура воды должна оставаться постоянной).

2. Для опыта брали отстоявшуюся водопроводную воду, обогащенную СО 2 добавлением NaHCO 3 или (NH 4) 2 CO 3 , или минеральную воду, и выставляли стакан с водным растением на яркий свет. Наблюдали за появлением пузырьков воздуха из среза растения.

3. Когда ток пузырьков становился равномерным, подсчитывали количество пузырьков, выделившихся за 1 мин. Подсчет проводили 3 раза с перерывом в 1 мин, данные записывали в таблицу, определяли средний результат.

4. Стакан с растением удаляли от источника света на 50–60 см и повторяли действия, указанные в п. 3.

5. Результаты опытов сравнивали и делали вывод о различной интенсивности фотосинтеза на ярком и слабом свету.

Результаты опытов представлены в таблице 1.

Вывод: при использованных интенсивностях света интенсивность фотосинтеза увеличивается с ростом интенсивности света, т.е. чем больше света, тем лучше идет фотосинтез.

Таблица 1. Зависимость фотосинтеза от интенсивности света

Опыт 2. Зависимость продуктивности фотосинтеза от спектрального состава света

Материалы и оборудование : элодея; набор светофильтров (синий, оранжевый, зеленый); семь высоких широкогорлых банок; отстоявшаяся водопроводная вода; ножницы; электролампа мощностью 200 Вт; часы; термометр; пробирки.

1. Пробирку наполняли на 2/3 объема отстоявшейся водопроводной водой и помещали в нее водное растение верхушкой вниз. Стебель подрезали под водой.

2. В высокую широкогорлую банку помещали синий светофильтр (круговой), под фильтр – пробирку с растением и выставляли банку на яркий свет так, чтобы он попадал на растение, походя через светофильтр. Наблюдали за появлением пузырьков воздуха из среза стебля растения.

3. Когда ток пузырьков становился равномерным, подсчитывали количество пузырьков, выделившихся за 1 мин. Подсчет проводили 3 раза с перерывом в 1 мин, пределяли средний результат, данные заносили в таблицу.

4. Синий светофильтр заменяли на красный и повторяли действия, указанные в п. 3, следя за тем, чтобы расстояние от источника света и температура воды оставались постоянными.

5. Результаты опытов сравнивали и делали вывод о зависимости интенсивности фотосинтеза от спектрального состава света.

Результаты опыта представлены в таблице 2.

Вывод: процесс фотосинтеза в оранжевом свете идет очень интенсивно, в синем замедляется, а в зеленом практически не идет.

Таблица 2. Зависимость продуктивности фотосинтеза от спектрального состава света

№ опыта

Светофильтр

Первое измерение

Второе измерение

Третье измерение

Среднее значение

Оранжевый

Опыт 3. Зависимость интенсивности фотосинтеза от температуры

Материалы и оборудование : элодея; три высокие широкогорлые банки; отстоявшаяся водопроводная вода; ножницы; пробирки; электролампа мощностью 200 Вт; часы; термометр.

1. Пробирку на 2/3 объема наполняли отстоявшейся водопроводной водой и помещали в нее водное растение верхушкой вниз. Стебель отрезали под водой.

2. В три широкогорлые банки наливали отстоявшуюся водопроводную воду разной температуры (от 14 °С до 45 °С), помещали пробирку с растением в банку с водой средней температуры (например, 25 °С) и выставляли прибор на яркий свет. Наблюдали за появлением пузырьков воздуха из среза стебля растения.

3. Через 5 мин подсчитывали количество пузырьков, выделившихся за 1 мин. Подсчет проводили 3 раза с перерывом в 1 мин, определяли средний результат, данные заносили в таблицу.

4. Пробирку с растением переносили в банку с водой другой температуры и повторяли действия, указанные в п. 3, следя за тем, чтобы расстояние от источника света и температура воды оставались постоянными.

5. Результаты опытов сравнивали и делали письменный вывод о влиянии температуры на интенсивность фотосинтеза.

Результаты опыта представлены в таблице 3.

Вывод: в исследованном интервале температур интенсивность фотосинтеза зависит от температуры: чем она выше, тем лучше идет фотосинтез.

Таблица 3. Зависимость фотосинтеза от температуры

В результате проведенного нами исследования мы сделали следующие выводы.

1. Фотоактивная пигментная система особенно сильно поглощает свет в красной области спектра. Довольно хорошо поглощаются хлорофиллом синие лучи и очень мало зеленые, что объясняет зеленую окраску растений.

2. Проведенный нами опыт с веточкой элодеи убедительно доказывает, что максимальная интенсивность фотосинтеза наблюдается при освещении именно красным светом.

3. Интенсивность фотосинтеза зависит от температуры.

4. Фотосинтез зависит от интенсивности света. Чем больше света, тем лучше идет фотосинтез.

Результаты подобной работы могут иметь практическое значение. В тепличных хозяйствах с искусственным освещением, подбирая спектральный состав света, можно увеличить урожай. В Агрофизическом институте в Ленинграде в конце 1980-х гг. в лаборатории Б.С. Мошкова с использованием особых режимов освещения получали 6 урожаев томатов в год (180 кг/м 2).

Растениям требуются световые лучи всех цветов. Как, когда, в какой последовательности и пропорции снабжать его лучистой энергией – это целая наука. Перспективы светокультуры очень велики: из лабораторных экспериментов она может превратиться в промышленное круглогодичное производство овощных, зеленых, декоративных и лекарственных культур.

ЛИТЕРАТУРА

1. Генкель П.А. Физиология растений: Учеб. пособие по факультативному курсу для 9-го класса. – М: Просвещение, 1985. – 175 с., ил.
2. Кретович В.Л. Биохимия растений: Учебник для биол. факультетов ун-тов. – М.: Высшая школа, 1980. – 445 с., илл.
3. Рейвн П., Эверт Р., Айкхорн С. Современная ботаника: В 2-х томах: Пер. с англ. – М.: Мир, 1990. – 344 с., ил.
4. Саламатова Т.С. Физиология растительной клетки: Учебное пособие. – Л.: Изд-во Ленинградского ун.та, 1983. – 232 с.
5. Тейлор Д., Грин Н., Стаут У. Биология: В 3-х томах: Пер. с англ./ Под ред. Р. Сопера – М.: Мир, 2006. – 454 с., илл.
6. http://sc.nios.ru (рисунки и схемы)

Скорость фотосинтеза зависит от факторов, среди которых выделяют свет,

концентрацию углекислого газа, воду, температуру. Почему эти факторы

являются лимитирующими для реакций фотосинтеза?

(допускаются иные формулировки ответа, не искажающие его смысла)

Элементы ответа:

свет – источник энергии для световых реакций фотосинтеза, при

его недостатке интенсивность фотосинтеза снижается;

углекислый газ и вода необходимы для синтеза глюкозы, при их

недостатке снижается интенсивность фотосинтеза;

3) все реакции фотосинтеза осуществляются при участии

ферментов, активность которых зависит от температуры

биологических ошибок

Ответ неправильный

Максимальный балл

C5 Для соматической клетки животного характерен диплоидный набор хромосом. Определите хромосомный набор (n) и число молекул ДНК (с) в клетке в конце телофазы мейоза I и анафазе мейоза II. Объясните результаты в каждом случае.

1) в конце телофазы мейоза I набор хромосом – n; число ДНК – 2с;

2) в анафазе мейоза II набор хромосом – 2n; число ДНК – 2с;

3) в конце телофазы I

произошло редукционное деление, число

хромосом и ДНК уменьшилось в 2 раза, хромосомы

двухроматидные;

4) в анафазе мейоза

II к полюсам расходятся сестринские

хроматиды (хромосомы), поэтому число хромосом равно числу

Ответ включает все названные выше элементы, не содержит

биологических ошибок

Ответ включает 2–3 из названных выше элементов и не содержит

биологических ошибок, ИЛИ ответ включает 4 названных выше

элемента, но содержит негрубые биологические ошибки

Ответ включает 1 из названных выше элементов и не содержит

биологических ошибок, ИЛИ ответ включает 2–3 из названных

выше элементов, но содержит негрубые биологические ошибки

Ответ неправильный

Максимальный балл

© 2014 Федеральная служба по надзору в сфере образования и науки Российской Федерации

C6 У человека ген нормального слуха (В) доминирует над геном глухоты и находится в аутосоме; ген цветовой слепоты (дальтонизма – d) рецессивный и сцеплен с Х-хромосомой. В семье, где мать страдала глухотой, но имела нормальное цветовое зрение, а отец – с нормальным слухом (гомозиготен), дальтоник, родилась девочка с нормальным слухом, но дальтоник. Составьте схему решения задачи. Определите генотипы родителей, дочери, возможные генотипы детей и их соотношение. Какие закономерности наследственности проявляются в данном случае?

(правильный ответ должен содержать следующие позиции)

Схема решения задачи включает:

1) генотипы родителей:

♀ bbXD Xd

♂ ВВXd Y

bXD , bXd

ВXd , ВY

2) возможные генотипы детей:

ВbXD Xd – девочка с нормальным слухом и зрением 25%;

ВbXd Xd – девочка с нормальным слухом, дальтоник 25%;

ВbXD Y – мальчик с нормальным слухом и зрением 25%;

ВbXd Y – мальчик с нормальным слухом и зрением 25%.

3) проявляется закон независимого

наследования признаков и

сцепленного с полом наследования признака

Ответ включает все названные выше элементы, не содержит

биологических ошибок

Ответ включает 2 из названных выше элементов и не содержит

биологических ошибок, ИЛИ ответ включает 3 названных выше

элемента, но содержит негрубые биологические ошибки

Ответ включает 1 из названных выше элементов и не содержит

биологических ошибок, ИЛИ ответ включает 2 из названных выше

элементов, но содержит негрубые биологические ошибки

Ответ неправильный

Максимальный балл

© 2014 Федеральная служба по надзору в сфере образования и науки Российской Федерации


Интенсивность и спектральный состав света

В среднем листья поглощают 80 - 85% энергии фотосинтетически активных лучей солнечного спектра (400 - 700 нм) и 25 % энергии инфракрасных лучей, что составляет около 55% от энергии общей радиации. На фотосинтез расходуется 1,5 - 2% поглощенной энергии (фотосинтетически активная радиация - ФАР).

Зависимость скорости фотосинтеза интенсивности света имеёт форму логарифмической кривой (рис.1). Прямая зависимость скорости процесса от притока энергии наблюдается только при низких интенсивностях света. Фотосинтез начинается при очень слабом освещении; Впервые это было показано А. С. Фаминцыным в 1880 г. на установке с искусственным освещением. Света керосиновой лампы оказалось достаточно для начала фотосинтеза и образования крахмала в растительных клетках. У многих светолюбивых растений максимальная (100%) интенсивность фотосинтеза наблюдается при освещенности, достигающей половины от полной солнечной, которая, таким образом, является насыщающей. Дальнейшее возрастание освещенности не увеличивает фотосинтез и затем снижает его.

Рис.1. Зависимость скорости фотосинтеза от интенсивности света у кукурузы

Анализ световых кривых фотосинтеза позволяет получить информацию о характере работы фотохимических систем и ферментативного аппарата. Угол наклона кривой характеризует скорость фотохимических реакций и содержание хлорофилла: чем он больше, тем активнее используется световая энергия. Обычно больше он у теневыносливых растений, обитающих под пологом леса, и у глубоководных водорослей. У этих растений, приспособленных к условиям слабого освещения, хорошо развитый пигментный аппарат позволяет активнее использовать низкие интенсивности света.

Активность фотосинтеза в области насыщающей интенсивности света характеризует мощность систем поглощения и восстановления С0 2 и определяется концентрацией CO 2 . Чем выше кривая в области насыщения интенсивности света, тем мощнее аппарат поглощения и восстановления С0 2 . У светолюбивых растений насыщение достигается при значительно большей освещенности, чем у теневыносливых. У теневыносливого печеночного мха маршанции световое насыщение фотосинтеза достигается при 1000 лк, у светолюбивых древесных растений - при 10 - 40 тыс. лк, а у некоторых высокогорных растений Памира (где освещенность достигает максимальных на Земле значений порядка 180 тыс. лк) - при 60 тыс. лк и выше. Светолюбивы большинство сельскохозяйственных и древесных растений, а также водоросли мелководий.

У растений, осуществляющих С 3 -путь фотосинтеза, насыщение происходит при более низкой интенсивности света, чем у растений с С 4 -путем превращения углерода, высокая фотосинтезирующая активность которых проявляется только при высоком уровне освещенности.

В области светового насыщения интенсивность фотосинтеза значительно выше интенсивности дыхания. При снижении освещенности до определенной величины интенсивности фотосинтеза и дыхания уравниваются. Уровень освещения, при котором поглощение С0 2 в процессе фотосинтеза уравновешивается выделением С0 2 в процессе дыхания, называется световым компенсационным пунктом. Его величину определяют при 0,03% С0 2 и температуре 20 °С. Значение светового компенсационного пункта неодинаково не только у теневыносливых (составляет примерно 1 % от полного света) и светолюбивых растений (около 3 - 5 % от полного солнечного света), но и у листьев разных ярусов одного и того же растения, оно зависит также от концентрации С0 2 в воздухе. Чрезмерно высокое освещение резко нарушает процесс биосинтеза пигментов, фотосинтетические реакции и ростовые процессы, что в итоге снижает общую продуктивность растений.

Существенно, что даже кратковременное изменение условий освещенности влияет на интенсивность фотосинтеза. Это важное адаптационное свойство позволяет растениям в фитоценозах полнее использовать свет. Фотосинтетический аппарат «настраивается» на периодические сдвиги освещенности при ветре, на частоту мелькания бликов в доли секунды.

На ход световых кривых фотосинтеза влияют изменения других факторов внешней среды. Например, при низких температурах (12 С) повышение интенсивности света становится малоэффективным. Температурный оптимум у растений с C 3 -типом фотосинтеза лежит в пределах 25-35 С. Повышение концентрации С0 2 с увеличением освещенности приводит к возрастанию скорости фотосинтеза (рис.2).


Рис.2. Взаимовлияние интенсивности света и концентрации углекислого газа на скорость фотосинтеза у мха

Почему именно красные лучи наиболее эффективны для фотосинтеза? Во-первых, потому, что энергия 1 кванта красного света (176 кДж/моль = 42 ккал/моль) вполне достаточна для перехода молекулы хлорофилла на первый синглетный уровень возбуждения S*. Затем эта энергия целиком может быть использована на фотохимические реакции. Энергия же 1 кванта синего света выше (293 кДж/моль = 70 ккал/моль). Поглотив квант синего света, молекула хлорофилла переходит на более высокий уровень синглетного возбуждения S*, и эта излишняя энергия превращается в теплоту при переходе молекулы в состояние S*. Энергия 1 кванта красного света примерно эквивалентна энергии перехода окислительно-восстановительного потенциала системы от Е" 0 = +0,8 В до Е"о = -0,8 В. Энергия 1 кванта инфракрасных лучей уже недостаточна для фотоокисления воды, но у фотосинтезирующих серных бактерий эта энергия вполне обеспечивает фотоокисление H 2 S в процессе фоторедукции. Поэтому у серных бактерий фотосинтез с участием бактериохлорофилла осуществляется при действии невидимого для человеческого глаза инфракрасного света.

Во-вторых, красный свет всегда присутствует в лучах прямой солнечной радиации. Если солнце находится под углом 90°, то красные лучи составляют примерно 1/4 часть полного солнечного света. Если же солнце стоит низко, красные лучи становятся преобладающими. При стоянии солнца под углом 5 0 красный свет составляет 2 / 3 от полного. Растения, выращенные на синем и красном свету, существенно различаются по составу продуктов фотосинтеза. По данным Н. П. Воскресенской (1965), при выравнивании синего и красного света по квантам, т. е. при одинаковых для фотохимической стадии фотосинтеза условиях освещения, синий свет уже через несколько секунд экспозиции активирует включение 14 С в неуглеводные продукты - амино- и органические кислоты, главным образом в аланин, аспартат, малат, цитрат, и в более поздние сроки (через минуты) - во фракцию белков, а красный свет при коротких экспозициях - во фракцию растворимых углеводов и при минутных экспозициях - в крахмал. Таким образом, на синем свету по сравнению с красным светом в листьях дополнительно образуются неуглеводные продукты.

Эти различия в метаболизме углерода при действии света разного качества обнаружены у целых растений с С 3 - и С 4 -путями ассимиляции С0 2 , у зеленых и красных водорослей они сохраняются при различных концентрациях С0 2 и неодинаковой интенсивности света. Но у изолированных хлоропластов различий в образовании крахмала на синем и красном свету не обнаружено. Полагают, что фоторецептором, с деятельностью которого связаны изменения в метаболизме углерода на синем свету у зеленых растений, являются флавины. Скорость фотосинтеза быстро и значительно увеличивается при добавке небольшого количества (20% от насыщения красного света) синего света к красному. По-видимому, это связано с тем, что фотохимическая стадия фотосинтеза регулируется синим светом.

Концентрация диоксида углерода

Углекислый газ является основным субстратом фотосинтеза его содержание определяет интенсивность процесса. Концентрация СО 2 в атмосфере составляет 0,03%. В слое воздуха высотой 100 м над гектаром пашни содержится 550 кг СО 2 . Из этого количества за сутки растения поглощают 120 кг СО 2 . Зависимость фотосинтеза от СО 2 выражается логарифмической кривой (рис. 3).При концентрации 0,03 % интенсивность фотосинтеза составляет лишь 50 % от максимальной, которая достигается при 0,3% СО 2 . Это свидетельствует о том, что в эволюции процесс фотосинтеза формировался при большей концентрации СО 2 в атмосфере. Кроме того, такой ход зависимости продуктивности фотосинтеза от концентрации С0 2 указывает на возможность подкормки растений в закрытых помещениях СО 2 для получения большего урожая. Такая подкормка СО 2 оказывает сильное влияние на урожай растений с С 3 -типом ассимиляции СО 2 и не влияет на растения с С 4 -типом, у которых существует особый механизм концентрирования СО 2 .


Рис.3. Зависимость интенсивности фотосинтеза от концентрации углекислого газа

Интенсивность ассимиляции С0 2 зависит от скорости его поступления из атмосферы в хлоропласты, которая определяется скоростью диффузии С0 2 через устьица, межклетники и в цитоплазме клеток мезофилла листа. В открытом состоянии устьица занимают лишь 1-2% площади листа, остальная поверхность покрыта плохо проницаемой для газов кутикулой. Однако при наличии кутикулы С0 2 входит в лист через устьица за единицу времени в таком же количестве, как и без нее. Объясняется это законом Стефана, согласно которому скорость перемещения молекул газа через малые отверстия пропорциональна их окружности, а не площади. Чем меньше отверстие, тем больше отношение окружности к площади. А у края отверстия молекулы в меньшей степени сталкиваются друг с другом и быстрее диффундируют. Поэтому через устьице с апертурой (открытостью) порядка 10 мкм молекулы газа перемещаются с большой скоростью. На процессы открывания и закрывания устьиц влияют С0 2 , насыщенность тканей водой, свет, фитогормоны.

Температура

Первичные фотофизические процессы фотосинтеза (поглощение и миграция энергии, возбужденные состояния) не зависят от температуры. Очень чувствительны к температуре процессы фотосинтетического фосфорилирования. Скорость комплекса энзиматических реакций, сопряженных с восстановлением углерода, при повышении температуры на 10 °С возрастает в 2 - 3 раза (Q 10 = 2 - 3).Общая зависимость фотосинтеза от температуры выражается одновершинной кривой (рис. 4). Кривая имеет три основные (кардинальные) температурные точки: минимальную, при которой начинается фотосинтез, оптимальную и максимальную. Интенсивность фотосинтеза при супероптимальных температурах зависит от продолжительности их воздействия на растения. Нижняя температурная граница фотосинтеза у растений северных широт находится в пределах -15 °С (сосна, ель)... -0,5 °С, а у тропических растений - в зоне низких положительных температур 4 - 8 °С. У растений умеренного пояса в интервале 20 - 25 °С достигается максимальная интенсивность фотосинтеза, а дальнейшее повышение температуры до 40 °С приводит к быстрому ингибированию процесса (при 45 °С растения погибают).

Некоторые растения пустынь способны осуществлять фотосинтез при 58 °С. Температурные границы фотосинтеза можно раздвинуть предварительным закаливанием, адаптацией растений к градиенту температур. Наиболее чувствительны к действию температуры реакции карбоксилирования, превращения фруктозо-6-фосфата в сахарозу и крахмал, а также транспорт сахарозы из листьев в другие органы. Необходимо отметить, что влияние на фотосинтез света, концентрации С0 2 и температуры осуществляется в сложном взаимодействии. Особенно тесно взаимосвязаны свет, действующий на скорость фотохимических реакций, и температура, контролирующая скорость энзиматических реакций. В условиях высокой интенсивности! света и низких температур (5- 10 °С), когда главным фактором, лимитирующим скорость всего процесса, являются ферментативные реакции, контролируемые температурой значения Q 10 могут быть > 4. При более высоких температурах Q 10 снижается до 2. При низких интенсивностях света Q 10 = 1, т. е. фотосинтез относительно независим от температуры, так как его скорость в данном случае ограничивается фотохимическими реакциями.


Рис. 4. Зависимость интенсивности фотосинтеза у ели от температуры

Водный режим

Вода непосредственно участвует в фотосинтезе как субстрат окисления и источник кислорода. Другой аспект влияния содержания воды на фотосинтез состоит в том, что величина оводненности листьев определяет степень открывания устьиц и, следовательно, поступления С0 2 в лист. При полном насыщении листа водой устьица закрываются, что снижает интенсивность фотосинтеза. В условиях засухи чрезмерная потеря воды листом также вызывает закрывание устьиц под влиянием увеличения содержания в листьях абсцизовой кислоты в ответ на недостаток влаги. Длительный водный дефицит в тканях листа при засухе приводит к ингибированию нециклического и циклического транспорта электронов и фотофосфорилирования и к снижению величины отношения ATP/NADPH за счет большего торможения образования АТР. Максимальный фотосинтез наблюдается при небольшом водном дефиците листа (порядка 5 - 20% от полного насыщения) при открытых устьицах.

Минеральное питание

Для нормального функционирования фотосинтетического аппарата растение должно быть обеспечено всем комплексом макро- и микроэлементов. Два основных процесса питания растительного организма - воздушный и корневой - тесно взаимосвязаны. Зависимость фотосинтеза от элементов минерального питания определяется их необходимостью для формирования фотосинтетического аппарата (пигментов, компонентов электронтранспортной цепи, каталитических систем хлоропластов, структурных и транспортных белков), а также для его обновления и функционирования.

Магний входит в состав хлорофиллов, участвует в деятельности сопрягающих белков при синтезе АТРу влияет на активность реакций карбоксилирования и восстановления NADP + . Вследствие этого его недостаток нарушает процесс фотосинтеза. Железо в восстановленной форме необходимо для процессов биосинтеза хлорофилла и железосодержащих соединений хлоропластов (цитохромов, ферредоксина). Дефицит железа резко нарушает функционирование циклического и нециклического фотофосфорилирования, синтез пигментов и изменяет структуру хлоропластов.

Необходимость; марганца для зеленых растений связана с его ролью в фотоокислении воды. Поэтому недостаточность питания по марганцу отрицательно сказывается на интенсивности фотосинтеза. В реакциях фотоокисления воды необходим также хлор. Медь входит в состав пластоцианина, поэтому у растений дефицит меди вызывает снижение интенсивности фотосинтеза. Недостаток азота сильно сказывается на формировании пигментных систем, структур хлоропласта и его общей активности. Концентрация азота определяет количество и активность РДФ-карбоксилазы.

В условиях недостатка фосфора нарушаются фотохимические и темновые реакции фотосинтеза. Особенно резко дефицит фосфора проявляется при высокой интенсивности света, при этом более чувствительными оказываются темновые реакции. Однако при уменьшении содержания фосфора в два раза интенсивность фотосинтеза снижается в меньшей степени, чем ростовые процессы и общая продуктивность растений. Избыток фосфора также тормозит скорость фотосинтеза, по-видимому, вследствие изменения проницаемости мембран.

Уменьшение содержания калия в тканях сопровождается значительным снижением интенсивности фотосинтеза и нарушениями других процессов в растении. В хлоропластах разрушается структура гран, устьица слабо открываются на свету и недостаточно закрываются в темноте, ухудшается водный режим листа, нарушаются все процессы фотосинтеза. Это свидетельствует о полифункциональной роли калия в ионной регуляции фотосинтеза.

Кислород

Процесс фотосинтеза обычно осуществляется в аэробных а условиях при концентрации кислорода 21 %.Увеличение содержания или отсутствие кислорода для фотосинтеза неблагоприятны. Обычная концентрация 0 2 превышает оптимальную для фотосинтеза величину. У растений с высоким уровнем фотодыхания (бобы и др.) уменьшение концентрации кислорода с 21 до 3% усиливало фотосинтез, а у растений кукурузы (с низким уровнем фотодыхания) такого рода изменение не влияло на интенсивность фотосинтеза. Высокие концентрации 0 2 (25 - 30%) снижают фотосинтез («эффект Варбурга»). Предложены следующие объяснения этого явления. Повышение парциального давления 0 2 и уменьшение концентрации С0 2 активируют фотодыхание. Кислород непосредственно снижает активность РДФ-карбоксилазы. Наконец О 2 может окислять первичные восстановленные продукты фотосинтеза.

Суточные и сезонные ритмы фотосинтеза

Исследования фотосинтеза растений естественных наземных экосистем были начаты в первой четверти XX в. работами В. Н. Любименко, С. П. Костычева и др. Факторы внешней среды, рассмотренные ранее, действуют совместно и в различных сочетаниях. Однако решающую роль играют свет, температура и водный режим. С восходом солнца интенсивность фотосинтеза возрастает вместе с освещенностью, достигая максимальных значений в 9-12 ч. Дальнейший характер процесса определяется степенью оводненности листьев, температурой воздуха и интенсивностью солнечного света. В полуденные часы интенсивность фотосинтеза не увеличивается: она может оставаться примерно на уровне утреннего максимума (в нежаркие, облачные дни) или несколько снижаться, но тогда к 16 - 17 ч наблюдается повторное усиление процесса. Интенсивность фотосинтеза падает после 22 ч с заходом солнца.

Дневная депрессия фотосинтеза (если имеет место) связана с нарушениями в деятельности фотосинтетического аппарата и оттока ассимилятов при перегреве, поскольку температура листьев в этот период может превышать температуру воздуха на 5-10°С. Если потери воды тканями велики и наблюдается усиление фотодыхания, то устьица в это время закрываются. Сезонные изменения фотосинтеза, изученные О. В. Заленским у растений пустынь и в условиях Арктики, показали, что у пустынных растений они зависят от особенностей онтогенеза, а у эфемеров с коротким вегетационным периодом максимальные интенсивности фотосинтеза наблюдаются в конце марта - середине апреля и совпадают с началом плодоношения. У растений, заканчивающих активную вегетацию в начале лета, сезонный максимум фотосинтеза отмечается перед наступлением летнего покоя.

У длительно вегетирующих деревьев и кустарников сезонный максимум регистрируется в самом начале жаркого и сухого периода. К осени интенсивность фотосинтеза постепенно снижается. У арктических растений сезонные изменения фотосинтеза проявляются в снижении его интенсивности в начале и в конце периода вегетации, когда растения часто подвержены действию заморозков. Максимум фотосинтеза отмечается в наиболее благоприятный период полярного лета.



Исследовательская работа

Тема: Влияние различных факторов на скорость фотосинтеза

Руководитель работы: Логвин Андрей Николаевич, учитель биологии

д.Шелоховская

2009

Введение - стр.3

Глава 1. Фотосинтез – стр.4

Глава 2. Абиотические факторы - свет и температура. Их роль для жизни растений – стр.5

2.1. Свет- стр.5

2.2. Температура - стр.6

2.3. Газовый состав воздуха - стр.7

Глава 3. Влияние различных факторов на скорость фотосинтеза – стр.983.1. Метод «крахмальной пробы» – стр.9

3.2. Зависимость фотосинтеза от интенсивности освещения – стр.10

3.3. Зависимость интенсивности фотосинтеза от температуры – стр.11

3.4. Зависимость интенсивности фотосинтеза от концентрации углекислого газа в атмосфере – стр.12

Заключение – стр.12

Источники информации – стр.13

Ведение

Жизнь на Земле зависит от Солнца. Приемником и накопителем энергии солнечных лучей на Земле являются зеленые листья растений как специализированные органы фотосинтеза. Фотосинтез - уникальный процесс создания органических веществ из неорганических. Это единственный на нашей планете процесс, связанный с превращением энергии солнечного света в энергию химических связей, заключенную в органических веществах. Таким способом поступившая из космоса энергия солнечных лучей, запасенная зелеными растениями в углеводах, жирах и белках, обеспечивает жизнедеятельность всего живого мира - от бактерий до человека.

Выдающийся русский ученый конца XIX - начала XX в. Климент Аркадьевич Тимирязев (1843-1920) роль зеленых растений на Земле назвал космической.

К.А. Тимирязев писал: «Все органические вещества, как бы они ни были разнообразны, где бы они ни встречались, в растении ли, в животном или человеке, прошли через лист, произошли от веществ, выработанных листом. Вне листа или, вернее, вне хлорофиллового зерна в природе не существует лаборатории, где бы выделялось органическое вещество. Во всех других органах и организмах оно превращается, преобразуется, только здесь оно образуется вновь из вещества неорганического».

Актуальность выбранной темы обусловлена тем что Все мы зависим от фотосинтезирующих растений и необходимо знать, какими способами можно повысить интенсивность фотосинтеза..

Объект исследования – комнатные растения

Предмет исследования – влияние различных факторов на скорость фотосинтеза.

Цели:

  1. Систематизация, углубление и закрепление знаний по фотосинтезу растений и абиотическим факторам окружающей среды.

2. Изучить зависимость скорости фотосинтеза от интенсивности освещения, температуры и концентрации углекислого газа в атмосфере.

Задачи:

  1. Изучить литературу по фотосинтезу растений, обобщить и углубить знания о влиянии абиотических факторов на фотосинтез растений.
  2. Изучить влияние различных факторов на скорость фотосинтеза.

Гипотеза исследования: Скорость фотосинтеза возрастает при увеличении интенсивности освещения, температуры и концентрации углекислого газа в атмосфере.

Методы исследования:

  1. Изучение и анализ литературы
  2. Наблюдение, сравнение, эксперимент.

Глава 1. Фотосинтез.

Процесс образования клетками зеленых растений и циано-бактериями органических веществ с участием света. В зеленых растениях происходит при участии пигментов (хлорофиллов и некоторых других), имеющихся в хлоропластах и хроматофорах клеток. Из веществ, бедных энергией (оксид углерода и вода), образуется углевод глюкоза и освобождается свободный кислород.

В основе фотосинтеза лежит окислительно-восстановитсльный процесс: электроны переносятся от донора-восстановителя (вода, водород и др.) к акцептору (оксид углерода, ацетат). Образуется восстановленное вещество (углевод глюкоза) и кислород, если окисляется вода. Различают две фазы фотосинтеза:

Световая (или светозависимая);

Темновая.

В световую фазу происходит накопление свободных атомов дорода, энергии (синтезируется АТФ). Темновая фаза фотосинтеза - ряд последовательных ферментативных реакций, и прежде всего реакций связывания углекислого газа (проникает в лист из атмосферы). В итоге образуются углеводы, сначала моносахариды (гексоза), затем - сахариды и полисахариды (крахмал). Синтез глюкозы идет с поглощением большого количества энергии (используется АТФ, синтезированная в световую фазу). Для удаления лишнего кислорода из диоксида углерода ис- пользуется водород, образовавшийся в световую фазу и находящийся в непрочном соединении с переносчиком водородм (НАДФ). Лишний кислород оказывается в связи с тем, что в диоксиде углерода число атомов кислорода вдвое больше, чем число атомов углерода, а в глюкозе число атомов углерода и кислорода равное.

Фотосинтез - единственный процесс в биосфере, ведущий к увеличению энергии биосферы за счет внешнего источника - Солнца и обеспечивающий существование как растений, так и всех гетеротрофных организмов.

В урожай переходит менее 1-2% солнечной энергии.

Потери: неполное поглощение света; лимитирование процесса на биохимических и физиологических уровнях.

Пути повышения эффективности фотосинтеза:

Обеспечение растений водой;

Обеспечение минеральными веществами и углекислым газом;

Создание благоприятной для фотосинтеза структуры посевов;

Селекция сортов с высокой эффективностью фотосинтеза.

Глава 2. Абиотические факторы - свет и температура.

Их роль для жизни растений.

Абиотическими факторами называются все элементы неживой природы, влияющие на организм. Среди них наиболее важными являются свет, температура, влажность, воздух, минеральные соли и др. Часто их объединяют в группы факторов: климатические, почвенные, орографические, геологические и др.

В природе трудно отделить действие одного абиотического фактора от другого, организмы всегда испытывают их совместное влияние. Однако для удобства изучения абиотические факторы обычно рассматриваются по отдельности.

2.1. Свет

Среди многочисленных факторов свет как носитель солнечной энергии является одним из основных. Без него невозможна фотосинтетическая деятельность зеленых растений. В то же время прямое воздействие света на протоплазму смертельно для организма. Поэтому многие морфологические и поведенческие свойства организмов обусловлены действием света.

Солнце излучает в космическое пространство громадное количество энергии, и хотя на долю Земли приходится лишь одна двухмиллионная часть солнечного излучения, его хватает на обогрев и освещение нашей планеты. Солнечное излучение - это электромагнитные волны самой разной длины, а также радиоволны длиной не более 1 см.

Среди солнечной энергии, проникающей в атмосферу Земли, имеются видимые лучи (их около 50%), теплые инфракрасные лучи (50%) и ультрафиолетовые лучи (около 1%). Для экологов важны качественные признаки света: длина волны (или цвет), интенсивность (действующая энергия в калориях) и продолжительность воздействии (длина дни).

Видимые лучи (мы называем их солнечным светом) состоят из лучей разной окраски и разной длины волн. Свет имеет очень большое значение в жизни всего органического мира, так как с ним связана активность животных и растений - только в условиях видимого света протекает фотосинтез.

В жизни организмов важны не только видимые лучи, но и другие виды лучистой энергии, достигающие земной поверхности: ультрафиолетовые и инфракрасные лучи, электромагнитные (особенно радиоволны) и даже гамма- и икс-излучение. К примеру, ультрафиолетовые лучи с длиной волны 0,38-0,40 мк обладают большой фотосинтезирующей активностью. Эти лучи, особенно когда они представлены в умеренных дозах, стимулируют рост и размножение клеток, способствуют синтезу высокоактивных биологических соединений, повышая в растениях содержание витаминов и антибиотиков, увеличивают устойчивость растительных клеток к различным заболеваниям.

Среди всех лучей солнечного света обычно выделяются лучи, так или иначе оказывающие влияние на растительные организмы, особенно на процесс фотосинтеза, ускоряя или замедляя его протекание. Эти лучи принято называть физиологически активной радиацией (сокращенно - ФАР). Наиболее активными среди ФАР являются: оранжево-красные (0,65-0,68 мк), сине-фиолетовые (0,40-0,50 мк) и близкие ультрафиолетовые (0,38-0,40 мк). Меньше всего поглощаются желто-зеленые лучи (0,50-0,58 мк) и почти не поглощаются инфракрасные. Лишь далекие инфракрасные лучи с длиной волны более 1,05 мк принимают участие в теплообмене растений и потому оказывают некоторое положительное воздействие, особенно в местах с низкими температурами.

Зеленым растениям свет нужен для образования хлорофилла, формирования гранальнои структуры хлоропластов; он регулирует работу устьичного аппарата, влияет на газообмен и транспира-цию, активизирует ряд ферментов, стимулирует биосинтез белков и нуклеиновых кислот. Свет влияет на деление и растяжение клеток, ростовые процессы и на развитие растений, определяет сроки цзетения и плодоношения, оказывает формообразующее воздействие. Но самое большое значение имеет свет в воздушном питании растений, в использовании ими солнечной энергии в процессе фотосинтеза.

2.2. Температура

Тепловой режим - одно из важнейших условий существования организмов, так как все физиологические процессы возможны лишь при определенных температурах. Приход тепла на земную поверхность обеспечивается солнечными лучами и распределяется по Земле в зависимости от высоты стояния Солнца над горизонтом и угла падения солнечных лучей. Поэтому тепловой режим неодинаков на разных широтах и на разной высоте над уровнем моря.

Температурный фактор характеризуется ярко выраженными сезонными и суточными колебаниями. Это действие фактора в ряде районов Земли имеет важное сигнальное значение в регуляции сроков активности организмов, обеспечивая их суточный и сезонный режим жизни.

В характеристике температурного фактора очень важны его крайние показатели, продолжительность их действия, а также то, как часто они повторяются. Изменение температуры в местах обитания, выходящее за пределы пороговой терпимости организмов, сопровождается их массовой гибелью.

Значение температуры для жизнедеятельности организмов проявляется в том, что она изменяет скорость физико-химических процессов в клетках. Температура влияет на анатомо-морфологические особенности организмов, оказывает воздействие на ход физиологических процессов, рост, развитие, поведение и во многих случаях определяет географическое распространение растений.

2.3. Газовый состав воздуха.

Кроме физических свойств воздушной среды, для существования наземных организмов чрезвычайно важны ее химические особенности. Газовый состав воздуха в приземном слое атмосферы довольно однороден в отношении содержания главных компонентов (азот - 78,1, кислород - 21,0, аргон -0,9, углекислый газ - 0,03% по объему) благодаря высокой диффузионной способности газов и постоянному перемешиванию конвекционными и ветровыми потоками. Однако различные примеси газообразных, капельно-жидких и твердых (пылевых) частиц, попадающих в атмосферу из локальных источников, могут иметь существенное экологическое значение.

Высокое содержание кислорода способствовало повышению обмена веществ у наземных организмов по сравнению с первично-водными. Кислород, из-за постоянно высокого его содержания в воздухе, не является фактором, лимитирующим жизнь в наземной среде. Лишь местами, в специфических условиях, создается временный его дефицит, например в скоплениях разлагающихся растительных остатков, запасах зерна, муки и т. п.

Содержание углекислого газа может изменяться в отдельных участках приземного слоя воздуха в довольно значительных пределах. Например, при отсутствии ветра в центре больших городов концентрация его возрастает в десятки раз. Закономерны суточные изменения содержания углекислоты в приземных слоях, связанные с ритмом фотосинтеза растений, и сезонные, обусловленные изменениями интенсивности дыхания живых организмов, преимущественно микроскопического населения почв. Повышенное насыщение воздуха углекислым газом возникает в зонах вулканической активности, возле термальных источников и других подземных выходов этого газа. В высоких концентрациях углекислый газ токсичен. В природе такие концентрации встречаются редко.

В природе основным источником углекислоты является так называемое почвенное дыхание. Углекислый газ диффундирует из почвы в атмосферу, особенно энергично во время дождя.

В современных условиях мощным источником поступления дополнительных количеств С0 2 в атмосферу стала деятельность человека по сжиганию ископаемых запасов топлива.

Низкое содержание углекислого газа тормозит процесс фотосинтеза. В условиях закрытого грунта можно повысить скорость фотосинтеза, увеличив концентрацию углекислого газа; этим пользуются в практике тепличного и оранжерейного хозяйства. Однако излишние количества С0 2 приводят к отравлению растений.

Азот воздуха для большинства обитателей наземной среды представляет инертный газ, но ряд микроорганизмов (клубеньковые бактерии, азотобактер, клостридии, сине-зеленые водоросли и др.) обладает способностью связывать его и вовлекать в биологический круговорот.

Местные примеси, поступающие в воздух, также могут существенно влиять на живые организмы. Это особенно относится к ядовитым газообразным веществам- метану, оксиду серы (IV), оксиду углерода (II), оксиду азота (IV), сероводороду, соединениям хлора, а также к частицам пыли, сажи и т. п., засоряющим воздух в промышленных районах. Основной современный источник химического и физического загрязнения атмосферы антропогенный: работа различных промышленных предприятий и транспорта, эрозия почв и т. п. Оксид серы (S0 2 ), например, ядовит для растений даже в концентрациях от одной пятидесятитысячной до одной миллионной от объема воздуха. Вокруг промышленных центров, загрязняющих атмосферу этим газом, погибает почти вся растительность. Некоторые виды растений особо чувствительны к S0 2 и служат чутким индикатором его накопления в воздухе. Например, лишайники погибают даже при следах оксида серы (IV) в окружающей атмосфере. Присутствие их в лесах вокруг крупных городов свидетельствует о высокой чистоте воздуха. Устойчивость растений к примесям в воздушной среде учитывают при подборе видов для озеленения населенных пунктов. Чувствительны к задымлению, например, обыкновенная ель и сосна, клен, липа, береза. Наиболее устойчивы туя, тополь канадский, клеи американский, бузина и некоторые другие.

Глава 3. Влияние различных факторов на скорость фотосинтеза.

Скорость процесса фотосинтеза зависит как от интенсивности света, так и от температуры. Лимитирующими факторами фотосинтеза могут быть также концентрация диоксида углерода, вода, элементы минерального питания, участвующие в построении фотосинтезирующего аппарата и являющиеся исходными компонентами для фотосинтеза органического вещества.

При определении интенсивности фотосинтеза используют две группы методов: 1) газометрические - регистрирующие количество поглощенного углекислого газа или выделенного кислорода; 2) методы учета количества образующегося при фотосинтезе органического вещества.

Простой и наглядный метод "крахмальной пробы". Метод основан на обнаружении и оценке количества накопленного при фотосинтезе крахмала с помощью раствора иода в йодистом калии.

3.1. Метод «крахмальной пробы»

Цель . Познакомиться с методом «крахмальной пробы».

Методика опыта.

Обильно полейте растение, поставьте в теплое темное место (в шкаф или ящик) или затемните отдельные листья темными пакетами из плотной черной бумаги. В темноте листья постепенно теряют крахмал, который гидролизует-ся до Сахаров и используется на дыхание, рост, отводится в другие органы.

Через 3 - 4 сут. проверьте обескрахмаливание листьев. Для этого вырежьте из затемненного листа кусочки, поме тите в пробирку с водой (2 - 3 мл) и прокипятите 3 мин, чтобы убить клетки и увеличить проницаемость цитоплазмы. Затем слейте воду и прокипятите несколько раз в этиловом спирте (по 2 - 3 мл), каждые 1-2 мин меняя раствор, пока кусочек ткани листа не обесцветится (кипятить надо на водяной бане, так как при пользовании спиртовкой спирт может вспыхнуть!). Слейте последнюю порцию спирта, добавьте немного воды для размягчения тканей листа (в спирте они становятся хрупкими), поместите кусочек ткани в чашку Петри и обработайте раствором иода. При полном обескрах-маливании синее окрашивание отсутствует и с такими листьями можно ставить опыт. При наличии даже небольшого количества крахмала работать с листом не следует, так как это затруднит наблюдение за образованием крахмала. Обескрахмаливание следует продлить еще на 1 - 2 сут.

Лишенные крахмала листья необходимо срезать с растения, обновить срез под водой и опустить черешок в пробирку с водой. Лучше работать со срезанными листьями, так как вновь образованный крахмал в этом случае не оттекает в другие органы.

Листья помещают в различные условия, предусмотренные задачами настоящей работы. Для накопления крахмала листья следует держать на расстоянии не менее 30-40 см от лампы 100 - 200 Вт и избегать перегрева с помощью вентилятора. Через 1 - 1,5 ч из листьев каждого варианта вырежьте три кусочка ткани одинаковой формы (круг, квадрат), обработайте так же, как и при проверке на полноту обескрахмаливания. В зависимости от условий опыта в листьях будет накапливаться различное количество крахмала, которое можно определить по степени его посинения. Так как накопление крахмала в отдельных участках листа может варьировать, из него берут не менее трех кусочков для анализа его содержания. Для оценки результатов пользуются усредненными значениями из трех повторностей.

Степень посинения листа оценивается в баллах:

темно-синий - 3;

средне-синий - 2;

слабо-синий - 1;

окраски нет - 0.

3.2. Зависимость фотосинтеза от интенсивности освещения.

Цель . Определить зависимости фотосинтеза от интенсивности освещения.

Методика опыта.

Листья пеларгонии, подготовленные к опыту, поместите: один в полную темноту; второй - на рассеянный дневной свет; третий - на яркий свет. Через указанное время определите в листьях наличие крахмала.

Сделайте вывод о влиянии интенсивности освещения на скорость фотосинтеза.

Ход работы.

Обильно полили герань, поставили в теплое темное место (в шкаф).

Через 3 суток проверили обескрахмаливание листьев. Для этого вырезали из затемненного листа кусочки, поместили в пробирку с водой (2 - 3 мл) и прокипятили 3 мин, чтобы убить клетки и увеличить проницаемость цитоплазмы. Затем слили воду и прокипятили на водяной бане несколько раз в этиловом спирте (по 2 - 3 мл), каждые 1-2 мин меняя раствор, пока кусочек ткани листа не обесцветился. Слили последнюю порцию спирта, добавили немного воды для размягчения тканей листа (в спирте они становятся хрупкими), поместили кусочек ткани в чашку Петри и обработали раствором иода.

Наблюдаем полное обескрахмаливание - синее окрашивание отсутствует.

Лишенные крахмала листья срезали с растения, обновили срез под водой и опустили черешок в пробирку с водой. Листья герани, подготовленные к опыту, поместили: один в полную темноту; второй - на рассеянный дневной свет; третий - на яркий свет.

Через 1 ч из листьев каждого варианта вырезали три кусочка ткани одинаковой формы, обработали так же, как и при проверке на полноту обескрахмаливания.

Результат.

Степень посинения листа в темноте – 0 баллов, на рассеянном свету – 1 балл, на ярком свете – 3 балла.

Вывод. При увеличении интенсивности освещения скорость фотосинтеза увеличилась.

3.3. Зависимость интенсивности фотосинтеза от температуры.

Цель . Определить зависимость фотосинтеза от температуры.

Методика опыта.

Подготовленные листья пеларгонии поставьте на равном расстоянии от мощного источника света: один на холод (между рамами окна), другой - при комнатной температуре. Через указанное время определите наличие крахмала.

Сделайте вывод о влиянии температуры на интенсивность фотосинтеза.

Ход работы.

Лишенные крахмала листья поставили на равном расстоянии от лампы: один на холод (между рамами окна), другой - при комнатной температуре. Через 1 ч из листьев каждого варианта вырезали три кусочка ткани одинаковой формы, обработали так же, как и при проверке на полноту обескрахмаливания.

Результат.

Степень посинения листа на холоде – 1 балл, при комнатной температуре – 3 балла.

Вывод. При увеличении температуры скорость фотосинтеза увеличилась.

3.4. Зависимость интенсивности фотосинтеза от концентрации углекислого газа в атмосфере.

Цель. Определить зависимость интенсивности фотосинтеза от концентрации углекислого газа в атмосфере

Методика опыта.

Листья пеларгонии, подготовленные к работе, поставьте в сосуд с водой, а сосуд - на кусок стекла под стеклянным колпаком. Туда же поместите маленькую чашечку с 1-2 г соды, в которую добавьте 3 - 5 мл 10%-ной серной или соляной кислоты. Замажьте стык между стеклом и колпаком пластилином. Другой лист оставьте в классе. При этом освещенность и температура обоих листьев должны быть одинаковы. Через указанное время проведите учет накопленного в листьях крахмала, сделайте вывод о влиянии концентрации СОг на интенсивность фотосинтеза.

Ход работы.

Листья герани, подготовленные к работе, поставили в сосуд с водой, а сосуд - на кусок стекла под стеклянным колпаком. Туда же поместили маленькую чашечку с 2 г соды, в которую добавьте 5 мл 10%-ной соляной кислоты. Замазали стык между стеклом и колпаком пластилином. Другой лист оставили в классе. При этом освещенность и температура обоих листьев одинаковы.

Результат.

Степень посинения листа в классе – 2 балл, под колпаком – 3 балла.

Вывод. При увеличении концентрации углекислого газа в атмосферы скорость фотосинтеза увеличилась.

Заключение

Проделав практическую часть исследовательской работы, мы пришли к выводу, что наша гипотеза подтвердилась. Действительно, интенсивность фотосинтеза зависит от температуры, освещенности, содержания углекислого газа в атмосфере.

Источники информации.

1. Лемеза Н.А., Лисов Н.Д. Клетка – основа жизни. Учеб. Пособие. – Мн.: НКФ «Экоперспектива», 1997.

2. Никишов А.И. Биология. Конспективный курс. Учеб.пособие. – М.: ТЦ «Сфера», 1999.

3.Пономарева И.Н., Корнилова О.А., Кумченко В.С. Биология: 6 класс: Учебник для учащихся общеобразовательных учреждений /Под ред. проф. И.Н.Пономаревой. – М.: Вентана-граф,2008.

4. Пономарева И.Н. Экология. – М.: Вентана-Граф,2006.

5. Чернова Н.М., Былова А.М. Экология: Учеб.пособие для студентов биол. спец. пед. ин-тов. – М.: Просвещение, 1988

Пономарева И.Н., Корнилова О.А., Кумченко В.С. Биология: 6 класс: Учебник для учащихся общеобразовательных учреждений /Под ред. проф. И.Н.Пономаревой. – М.: Вентана-граф, 2008.

Чернова Н.М., Былова А.М. Экология: Учеб.пособие для студентов биол. спец. пед. ин-тов. – М.: Просвещение, 1988