Как складывать и вычитать квадратные корни. Умножение корней: основные правила

Сложение и вычитание корней - один из наиболее распространенных «камней преткновения» для тех, кто проходит курс математики (алгебры) в средней школе. Однако научиться правильно складывать и вычитать их очень важно, потому что примеры на сумму или разность корней входят в программу базового Единого Государственного Экзамена по дисциплине «математика».

Для того чтобы освоить решение таких примеров, необходимо две вещи - разобраться в правилах, а также наработать практику. Решив один-два десятка типовых примеров, школьник доведет этот навык до автоматизма, и тогда ему уже будет нечего бояться на ЕГЭ. Начинать освоение арифметических действий рекомендуется со сложения, потому что складывать их немного проще, чем вычитывать.

Что такое корень

Проще всего объяснить это на примере квадратного корня. В математике имеется устоявшийся термин «возвести в квадрат». «Возвести в квадрат» означает однократно умножить конкретное число само на себя . Например, если возвести в квадрат 2, получится 4. Если возвести в квадрат 7, получится 49. Квадрат числа 9 равен 81. Таким образом, квадратный корень из 4 - это 2, из 49 - это 7, а из 81 - это 9.

Как правило, обучение этой теме в математике начинается именно с квадратных корней. Для того, чтобы сходу определять его, учащийся средней школы должен наизусть знать таблицу умножения. Тем, кто нетвердо знает эту таблицу, приходится пользоваться подсказками. Обычно процесс извлечения корневого квадрата из числа приводится в виде таблицы на обложках многих школьных тетрадей по математике.

Корни бывают следующих типов:

  • квадратные;
  • кубические (или так называемые третьей степени);
  • четвертой степени;
  • пятой степени.

Правила сложения

Для того чтобы успешно решить типовой пример, необходимо иметь в виду, что не все корневые числа можно складывать друг с другом . Чтобы их можно было сложить, их необходимо привести к единому образцу. Если это невозможно, значит, задача не имеет решения. Такие задачи тоже часто встречаются в учебниках математики в качестве своеобразной ловушки для учащихся.

Не разрешается сложение в заданиях, когда подкоренные выражения отличаются друг от друга. Это можно проиллюстрировать на наглядном примере:

  • перед учеником стоит задача: сложить квадратный корень из 4 и из 9;
  • неопытный ученик, не знающий правила, обычно пишет: «корень из 4 + корень из 9=корень из 13».
  • доказать, что этот способ решения неправильный, очень просто. Для этого нужно найти квадратный корень из 13 и проверить, верно ли решен пример;
  • с помощью микрокалькулятора можно определить, что он составляет примерно 3,6. Теперь осталось проверить решение;
  • корень из 4=2, а из 9=3;
  • Сумма чисел «два» и «три» равняется пяти. Таким образом, данный алгоритм решения можно считать неверным.

Если корни имеют одинаковую степень, но разные числовые выражения, он выносится за скобки, а в скобки вносится сумма двух подкоренных выражений . Таким образом, он извлекается уже из этой суммы.

Алгоритм сложения

Для того чтобы правильно решить простейшую задачу, необходимо:

  1. Определить, что именно требуют сложения.
  2. Разобраться, можно ли складывать значения друг с другом, руководствуясь существующими в математике правилами.
  3. Если они не подлежат сложению, нужно трансформировать их таким образом, чтобы их можно было складывать.
  4. Осуществив все необходимые преобразования, необходимо выполнить сложение и записать готовый ответ. Производить сложение можно в уме или с помощью микрокалькулятора, в зависимости от сложности примера.

Что такое подобные корни

Чтобы правильно решить пример на сложение, необходимо, в первую очередь, подумать о том, как можно его упростить. Для этого нужно обладать базовыми знаниями о том, что такое подобие.

Умение определять подобные помогает быстро решать однотипные примеры на сложение, приводя их в упрощенный вид. Чтобы упростить типовой пример на сложение, необходимо:

  1. Найти подобные и выделить их в одну группу (или в несколько групп).
  2. Заново написать имеющийся пример таким образом, чтобы корни, которые имеют один и тот же показатель, шли четко друг за другом (это и называется «сгруппировать»).
  3. Далее следует еще раз написать выражение заново, на этот раз таким образом, чтобы подобные (у которых один и тот же показатель и одна и та же подкоренная цифра) тоже шли друг за другом.

После этого упрощенный пример обычно легко поддается решению.

Для того, чтобы правильно решить любой пример на сложение, необходимо четко представлять себе основные правила сложения, а также знать о том, что такое корень и каким он бывает.

Иногда такие задачи с первого взгляда выглядят очень сложно, но обычно они легко решаются путем группировки подобных. Самое главное - практика, и тогда ученик начнет «щелкать задачи, как орешки». Сложение корней - один из самых важных разделов математики, поэтому учителя должны отводить достаточно времени на его изучение.

Сейчас в школьной программе происходит, что-то не совсем понятно. Одно радует, что в математике все остается неизменной. Работа с корнями, а именно складывание и вычитание не очень сложное действие. Но у некоторых учеников вызывают определенные трудности.

И в этой статье мы разберем правила, как складывать и вычитать квадратные корни.

Вычитать и складывать квадратные корни можно если срабатывает условие, что у этих корней имеются одинаковые подкоренные выражения. Другими словами, мы можем проводить действия с 2√3 и 4√3, а не с 2√3 и 2√7. Но можно провести действия по упрощению подкоренного выражения, чтобы потом привести их к корням, которые будут иметь одинаковые подкоренные выражения. И только после этого уже начать складывать или вычитать.

Теория складывания и вычитания квадратных корней

Сам принцип очень простой. И составит из трех действий. Нужно упростить подкоренной выражение. Найти получившиеся одинаковые подкоренные выражения и сложить или вычесть корни.

Как упростить подкоренное выражение

Для этого нужно разложить подкоренное число, что бы состояло из двух множителей. Главное условие. Одно из этих чисел должно быть квадратным числом (пример: 25 или 9). После этого действия мы извлекаем корень из данного квадратного числа. И записываем это число перед нашим корнем, а под корнем у нас остается второй множитель.

Например, 6√50 — 2√8 + 5√12

6√50 = 6√(25 x 2) = (6 x 5)√2 = 30√2. Тут мы раскладываем 50 на два множителя 25 и 2. Потом из 25 мы извлекаем квадратный корень (получаем число 5) и выносим его из под корня. Далее 5 умножаем на 6 и получаем 30√2

2√8 = 2√(4 x 2) = (2 x 2)√2 = 4√2. В данном примеры мы 8 раскладываем на два числа 4 и 2. Из 4 извлекаем корень и выносим получившееся число за корень и умножаем его на то число которое было уже за корнем.

5√12 = 5√(4 x 3) = (5 x 2)√3 = 10√3. Тут мы, как и раньше число под корнем раскладываем на два числа 4 и 3. Из 4-х извлекаем корень. Получившееся число выносим за корень и перемножаем его на то число которое было за корнем.

В итоге мы преобразовали уравнение 6√50 — 2√8 + 5√12 в такой вид 30√2 — 4√2 + 10√3

Подчеркиваем корни у которых одинаковы подкоренные выражения

В нашем примере 30√2 — 4√2 + 10√3 мы выделяем 30√2 и 4√2 Так, как у этих чисел одинаковое подкоренное число 2.
Если в Вашем примере несколько одинаковых подкоренных выражений. Подчеркивайте одинаковые из них разными линиями.

Складываем или вычитаем наши корни

Теперь складываем или вычитаем числа которые имеют одинаковые подкоренные выражения. А то, что под корнем мы оставляем неизменным. Смысл в том, чтобы показать сколько всего корней с определенными подкоренными выражениями есть в заданном уравнении.

В нашем примере 30√2 — 4√2 + 10√3 мы от 30 отнимаем 4 и получаем 26√2

Ответ в нашем примере будет такой. 26√2 + 10√3

Sabibon — самое интересное в интернете

Что такое математический корень?

Это действие возникло в противовес возведению в степень. Математика предполагает наличие двух противоположных операций. На сложение существует вычитание. Умножению противостоит деление. Обратное действие степени — это извлечение соответствующего корня.

Если в степени стоит двойка, то и корень будет квадратным. Он является самым распространенным в школьной математике. У него даже нет указания, что он квадратный, то есть возле него не приписывается цифра 2. Математическая запись этого оператора (радикала) представлена на рисунке.

Из описанного действия плавно вытекает его определение. Чтобы извлечь квадратный корень из некоторого числа, нужно выяснить, какое даст при умножении на себя подкоренное выражение. Это число и будет квадратным корнем. Если записать это математически, то получится следующее: х*х=х 2 =у, значит √у=х.

Какие действия с ними можно выполнять?

По своей сути корень — это дробная степень, у которой в числителе стоит единица. А знаменатель может быть любым. Например, у квадратного корня он равен двум. Поэтому все действия, которые можно выполнить со степенями, будут справедливы и для корней.

И требования к этим действиям у них одинаковые. Если умножение, деление и возведение в степень не встречают затруднений у учеников, то сложение корней, как и их вычитание, иногда приводит в замешательство. А все потому что хочется выполнить эти операции без оглядки на знак корня. И здесь начинаются ошибки.

По каким правилам выполняется их сложение и вычитание?

Сначала нужно запомнить два категорических «нельзя»:

  • нельзя выполнять сложение и вычитание корней, как у простых чисел, то есть невозможно записать подкоренные выражения суммы под один знак и выполнять с ними математические операции;
  • нельзя складывать и вычитать корни с разными показателями, например квадратный и кубический.

Наглядный пример первого запрета: √6 + √10 ≠ √16, но √(6 + 10) = √16 .

Во втором случае лучше ограничиться упрощением самих корней. А в ответе оставить их сумму.

Теперь к правилам

  1. Найти и сгруппировать подобные корни. То есть те, у которых не только стоят одинаковые числа под радикалом, но и они сами с одним показателем.
  2. Выполнить сложение корней, объединенных в одну группу первым действием. Оно легко осуществимо, потому что нужно только сложить значения, которые стоят перед радикалами.
  3. Извлечь корни в тех слагаемых, в которых подкоренное выражение образует целый квадрат. Другими словами, не оставлять ничего под знаком радикала.
  4. Упростить подкоренные выражения. Для этого нужно разложить их на простые множители и посмотреть, не дадут ли они квадрата какого-либо числа. Понятно, что это справедливо, если речь идет о квадратном корне. Когда показатель степени три или четыре, то и простые множители должны давать куб или четвертую степень числа.
  5. Вынести из-под знака радикала множитель, который дает целую степень.
  6. Посмотреть, не появилось ли опять подобных слагаемых. Если да, то снова выполнить второе действие.

В ситуации, когда задача не требует точного значения корня, его можно вычислить на калькуляторе. Бесконечную десятичную дробь, которая высветится в его окошке, округлить. Чаще всего это делают до сотых. А потом выполнять все операции для десятичных дробей.

Это вся информация о том, как выполняется сложение корней. Примеры, расположенные ниже, проиллюстрируют вышесказанное.

Первое задание

Вычислить значение выражений:

а) √2 + 3√32 + ½ √128 — 6√18;

б) √75 — √147 + √48 — 1/5 √300;

в) √275 — 10√11 + 2√99 + √396.

а) Если следовать приведенному выше алгоритму, то видно, что для первых двух действий в этом примере ничего нет. Зато можно упростить некоторые подкоренные выражения.

Например, 32 разложить на два множителя 2 и 16; 18 будет равно произведению 9 и 2; 128 — это 2 на 64. Учитывая это, выражение будет записано так:

√2 + 3√(2 * 16) + ½ √(2 * 64) — 6 √(2 * 9).

Теперь нужно вынести из-под знака радикала те множители, которые дают квадрат числа. Это 16=4 2 , 9=3 2 , 64=8 2 . Выражение примет вид:

√2 + 3 * 4√2 + ½ * 8 √2 — 6 * 3√2.

Нужно немного упростить запись. Для этого производится умножение коэффициентов перед знаками корня:

√2 + 12√2 + 4 √2 — 12√2.

В этом выражении все слагаемые оказались подобными. Поэтому их нужно просто сложить. В ответе получится: 5√2.

б) Подобно предыдущему примеру, сложение корней начинается с их упрощения. Подкоренные выражения 75, 147, 48 и 300 будут представлены такими парами: 5 и 25, 3 и 49, 3 и 16, 3 и 100. В каждой из них имеется число, которое можно вынести из-под знака корня:

5√5 — 7√3 + 4√3 — 1/5 * 10√3.

После упрощения получается ответ: 5√5 — 5√3. Его можно оставить в таком виде, но лучше вынести общий множитель 5 за скобку: 5 (√5 — √3).

в) И снова разложение на множители: 275 = 11 * 25, 99 = 11 * 9, 396 = 11 * 36. После вынесения множителей из-под знака корня имеем:

5√11 — 10√11 + 2 * 3√11 + 6√11. После приведения подобных слагаемых получим результат: 7√11.

Пример с дробными выражениями

√(45/4) — √20 — 5√(1/18) — 1/6 √245 + √(49/2).

На множители нужно будет разложить такие числа: 45 = 5 * 9, 20 = 4 * 5, 18 = 2 * 9, 245 = 5 * 49. Аналогично уже рассмотренным, нужно вынести множители из-под знака корня и упростить выражение:

3/2 √5 — 2√5 — 5/ 3 √(½) — 7/6 √5 + 7 √(½) = (3/2 — 2 — 7/6) √5 — (5/3 — 7) √(½) = — 5/3 √5 + 16/3 √(½).

Это выражение требует того, чтобы избавиться от иррациональности в знаменателе. Для этого нужно умножить на √2/√2 второе слагаемое:

— 5/3 √5 + 16/3 √(½) * √2/√2 = — 5/3 √5 + 8/3 √2.

Для полноты действий нужно выделить целую часть у множителей перед корнями. У первого она равна 1, у второго — 2.

В математике любое действие имеет свою пару-противоположность – в сущности, это представляет собою одно из проявлений гегелевского закона диалектики: «единство и борьба противоположностей». Одно из действий в такой «паре» направлено на увеличение числа, а другое, обратное ему – на уменьшение. Например, действие, противоположное сложению – это вычитание, умножению соответствует деление. Имеется и своя диалектическая пара-противоположность и у возведения в степень. Речь идет об извлечении корня.

Извлечь из числа корень такой-то степени – это значит вычислить, какое число необходимо возвести в соответствующую степень, чтобы в итоге получилось данное число. Две степени имеют свои отдельные названия: вторая степень называется «квадратом», а третья – «кубом». Соответствено, корни данных степеней приятно именовать квадратным корнем и кубическим. Действия с кубическими корнями – тема для отдельного разговора, а сейчас поговорим о сложении квадратных корней.

Начнем с того, что в ряде случаев квадратные корни проще сначала извлечь, а потом уже складывать результаты. Предположим, нам необходимо найти значение такого выражения:

Ведь совсем не сложно вычислить, что корень квадратный из 16 равен 4, а из 121 – 11. Следовательно,

√16+√121=4+11=15

Впрочем, это самый простой случай – здесь речь идет о полных квадратах, т.е. о таких числах, которые получаются при возведении в квадрат целых чисел. Но так бывает не всегда. Например, число 24 – это не полный квадрат (не найти такого целого числа, которое при возведении его во вторую степень дало бы в результате 24). То же самое относится к такому числу, как 54… Что делать, если нам необходимо сложить корни квадратные из этих чисел?

В таком случае мы получим в ответе не число, а другое выражение. Максимум, что мы можем тут сделать – это максимально упростить исходное выражение. Для этого придется вынести множители из-под корня квадратного. Посмотрим, как это делается, на примере упомянутым чисел:

Для начала разложим на множители 24 – таким образом, чтобы из одного из них легко можно было извлечь корень квадратный (т.е., чтобы он был полным квадратом). Такое числи есть – это 4:

Теперь проделаем то же самое с 54. В его составе таким числом будет 9:

Т.о., у нас получается следующее:

√24+√54=√(4*6)+ √(9*6)

Теперь извлечем корни из того, из чего можем их извлечь: 2*√6+3*√6

Здесь есть общий множитель, который мы можем вынести за скобки:

(2+3)* √6=5*√6

Это и будет результатом сложения – больше ничего тут извлечь нельзя.

Правда, можно прибегнуть к помощи калькулятора – правда, результат будет приблизительным и с огромным количеством знаков после запятой:

√6=2,449489742783178

Постепенно округляя его, мы получим приблизительно 2,5. Если нам все-таки хотелось бы довести до логического завершения решение предыдущего примера, мы можем умножить этот результат на 5 – и получится у нас 12,5. Более точного результата при таких исходных данных получить нельзя.

Формулы корней. Свойства квадратных корней.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

В предыдущем уроке мы разобрались, что такое квадратный корень . Пришла пора разобраться, какие существуют формулы для корней , каковы свойства корней , и что со всем этим можно делать.

Формулы корней, свойства корней и правила действий с корнями - это, по сути, одно и то же. Формул для квадратных корней на удивление немного. Что, безусловно, радует! Вернее, понаписать всяких формул можно много, но для практической и уверенной работы с корнями достаточно всего трёх. Все остальное из этих трёх проистекает. Хотя и в трех формулах корней многие плутают, да...

Начнём с самой простой. Вот она:

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Квадратным корнем из числа X называется число A , которое в процессе умножения самого на себя (A * A ) может дать число X .
Т.е. A * A = A 2 = X , и √X = A .

Над квадратными корнями (√x ), как и над другими числами, можно выполнять такие арифметические операции, как вычитание и сложение. Для вычитания и сложения корней их нужно соединить посредством знаков, соответствующих этим действиям (например √x — √y ).
А потом привести корни к их простейшей форме — если между ними окажутся подобные, необходимо сделать приведение. Оно заключается в том, что берутся коэффициенты подобных членов со знаками соответствующих членов, далее заключаются в скобки и выводится общий корень за скобками множителя. Коэффициент, который мы получили, упрощается по обычным правилам.

Шаг 1. Извлечение квадратных корней

Во-первых, для сложения квадратных корней сначала нужно эти корни извлечь. Это можно будет сделать в том случае, если числа под знаком корня будут полными квадратами. Для примера возьмем заданное выражение √4 + √9 . Первое число 4 является квадратом числа 2 . Второе число 9 является квадратом числа 3 . Таким образом, можно получить следующее равенство: √4 + √9 = 2 + 3 = 5 .
Все, пример решен. Но так просто бывает далеко не всегда.

Шаг 2. Вынесение множителя числа из-под корня

Если полных квадратов нет под знаком корня, можно попробовать вынести множитель числа из-под знака корня. Для примера возьмём выражение √24 + √54 .

Раскладываем числа на множители:
24 = 2 * 2 * 2 * 3 ,
54 = 2 * 3 * 3 * 3 .

В числе 24 мы имеем множитель 4 , его можно вынести из-под знака квадратного корня. В числе 54 мы имеем множитель 9 .

Получаем равенство:
√24 + √54 = √(4 * 6) + √(9 * 6) = 2 * √6 + 3 * √6 = 5 * √6 .

Рассматривая данный пример, мы получаем вынос множителя из-под знака корня, тем самым упрощая заданное выражение.

Шаг 3. Сокращение знаменателя

Рассмотрим следующую ситуацию: сумма двух квадратных корней – это знаменатель дроби, например, A / (√a + √b) .
Теперь перед нами стоит задача «избавиться от иррациональности в знаменателе».
Воспользуемся следующим способом: умножаем числитель и знаменатель дроби на выражение √a — √b .

Формулу сокращённого умножения мы теперь получаем в знаменателе:
(√a + √b) * (√a — √b) = a – b .

Аналогично, если в знаменателе имеется разность корней: √a — √b , числитель и знаменатель дроби умножаем на выражение √a + √b .

Возьмём для примера дробь:
4 / (√3 + √5) = 4 * (√3 — √5) / ((√3 + √5) * (√3 — √5)) = 4 * (√3 — √5) / (-2) = 2 * (√5 — √3) .

Пример сложного сокращения знаменателя

Теперь будем рассматривать достаточно сложный пример избавления от иррациональности в знаменателе.

Для примера берём дробь: 12 / (√2 + √3 + √5) .
Нужно взять её числитель и знаменатель и перемножить на выражение √2 + √3 — √5 .

12 / (√2 + √3 + √5) = 12 * (√2 + √3 — √5) / (2 * √6) = 2 * √3 + 3 * √2 — √30.

Шаг 4. Вычисление приблизительного значения на калькуляторе

Если вам требуется только приблизительное значение, это можно сделать на калькуляторе путём подсчёта значения квадратных корней. Отдельно для каждого числа вычисляется значение и записывается с необходимой точностью, которая определяется количеством знаков после запятой. Далее совершаются все требуемые операции, как с обычными числами.

Пример вычисления приблизительного значения

Необходимо вычислить приблизительное значение данного выражения √7 + √5 .

В итоге получаем:

√7 + √5 ≈ 2,65 + 2,24 = 4,89 .

Обратите внимание: ни при каких условиях не следует производить сложение квадратных корней, как простых чисел, это совершенно недопустимо. То есть, если сложить квадратный корень из пяти и из трёх, у нас не может получиться квадратный корень из восьми.

Полезный совет: если вы решили разложить число на множители, для того, чтобы вывести квадрат из-под знака корня, вам необходимо сделать обратную проверку, то есть перемножить все множители, которые получились в результате вычислений, и в конечном результате этого математического расчёта должно получиться число, которое нам было задано первоначально.

Правила вычитания корней

1. Корень степени из произведения неотрицательных чисел равен произведению корней той же степени из сомножителей: где (правило извлечения корня из произведения).

2. Если , то у (правило извлечения корня из дроби).

3. Если то (правило извлечения корня из корня).

4. Если то правило возведения корня в степень).

5. Если то где т. е. показатель корня и показатель подкоренного выражения можно умножить на одно и то же число.

6. Если то 0, т. е. большему положительному подкоренному выражению соответствует и большее значение корня.

7. Все указанные выше формулы часто применяются в обратном порядке (т. е. справа налево). Например,

(правило умножения корней);

(правило деления корней);

8. Правило вынесения множителя из-под знака корня. При

9. Обратная задача - внесение множителя под знак корня. Например,

10. Уничтожение иррациональности в знаменателе дроби.

Рассмотрим некоторые типичные случаи.

  • Значение слова Объясните значение слов: закон, ростовщик, раб-должник. объясните значение слов: закон, ростовщик, раб-должник. ВкУсНаЯ КлУбНиКа (Гость) Школы Вопросы по теме 1.На какие 3 типа можно разделить […]
  • на рацию в машине разрешение нужно? где бы прочитать? Вам необходимо зарегистрировать вашу радиостанцию в любом случае. Рации, которые работают на частоте 462MHz, если Вы не являетесь представителем МВД, на Вас не […]
  • Ставка единого налога - 2018 Ставка единого налога - 2018 для предпринимателей-физлиц первой и второй гpупп расcчитывается в процентах oт размера прожиточного минимума и минимальной зарплаты, установлeнных нa 01 января […]
  • Страховка на авито ГАРАHTИЯ ЛЕГАЛЬНОСТИ. Вы pешили cамoстoятельнo офopмить элeктpoнный aдpес ОCAГO нo у вac ничегo нe получaeтcя?Без пaники! !!Bнeсу зa вaс вce нeобхoдимые данные в элeктрoнную зaявку cтpaxовой […]
  • Порядок исчисления и уплаты акцизного налога Акцизный налог – это один из косвенных налогов на товары и услуги, который включается в их стоимость. Акцизный налог отличается при этом от НДС тем, что накладывается на […]
  • Приложение. Правила землепользования и застройки города Ростова-на-Дону Приложениек решению городской Думыот 17 июня 2008 г. N 405 Правила землепользования и застройки города Ростова-на-Дону С изменениями и […]

Например,

11. Применение тождеств сокращенного умножения к действиям с арифметическими корнями:

12. Множитель, стоящий перед корнем, называется его коэффициентом. Например, Здесь 3 является коэффициентом.

13. Корни (радикалы) называются подобными, если они имеют одинаковые показатели корней и одинаковые подкоренные выражения, а отличаются только коэффициентом. Чтобы судить о том, подобны данные корни (радикалы) или нет, нужно привести их к простейшей форме.

Например, и подобны, так как

УПРАЖНЕНИЯ С РЕШЕНИЯМИ

1. Упростить выражения:

Решение. 1) Перемножать подкоренное выражение нет смысла, так как каждый из сомножителей представляет квадрат целого числа. Воспользуемся правилом извлечения корня из произведения:

В дальнейшем такие действия будем выполнять устно.

2) Попытаемся, если это возможно, представить подкоренное выражение в виде произведения множителей, каждый из которых является кубом целого числа, и применим правило о корне из произведения:

2. Найти значение выражения:

Решение. 1) По правилу извлечения корня из дроби имеем:

3) Преобразуем подкоренные выражения и извлечем корень:

3. Упростить при

Решение. При извлечении корня из корня показатели корней перемножаются, а подкоренное выражение остается без изменения

Если перед корнем, находящимся под корнем, имеется коэффициент, то прежде чем выполнить операцию извлечения корня, вводят этот коэффициент под знак радикала, перед которым он стоит.

Извлечем на основании изложенных правил два последних корня:

4. Возвести в степень:

Решение. При возведении корня в степень показатель корня остается без изменения, а показатели подкоренного выражения умножаются на показатель степени.

(так как определен, то );

Если данный корень имеет коэффициент, то этот коэффициент возводится в степень отдельно и результат записывается коэффициентом при корне.

Здесь мы использовали правило, что показатель корня и показатель подкоренного выражения можно умножать на одно и то же число (мы умножили на т. е. разделили на 2).

Например, или

4) Выражение в скобках, представляющее сумму двух различных радикалов, возведем в куб и упростим:

Поскольку имеем:

5. Исключить иррациональность в знаменателе:

Решение. Для исключения (уничтожения) иррациональности в знаменателе дроби нужно подыскать простейшее из выражений, которое в произведении со знаменателем дает рациональное выражение, и умножить на подысканный множитель числитель и знаменатель данной дроби.

Например, если в знаменателе дроби двучлен то надо числитель и знаменатель дроби умножить на выражение, сопряженное знаменателю, т. е. сумму надо умножить на соответствующую разность и наоборот.

В более сложных случаях уничтожают иррациональность не сразу, а в несколько приемов.

1) В выражении должно быть

Умножая числитель и знаменатель дроби на получим:

2) Умножая числитель и знаменатель дроби на неполный квадрат суммы, получим:

3) Приведем дроби к общему знаменателю:

Решая данный пример, мы должны иметь в виду, что каждая дробь имеет смысл, т. е. знаменатель каждой дроби отличен от нуля. Кроме того,

При преобразовании выражений, содержащих радикалы, часто допускают ошибки. Они вызваны неумением правильно применять понятие (определение) арифметического корня и абсолютной величины.

Правила вычитания корней

Вычислите значение выражения

Решение .

Пояснение .
Для сворачивания подкоренного выражения, представим во втором множителе в его подкоренном выражении число 31 как сумму 15+16. (строка 2)

После преобразования, видно, что сумма во втором подкоренном выражении может быть представлена как квадрат суммы по формулам сокращенного умножения. (строка 3)

Теперь представим каждый корень из данного произведения как степень. (строка 4)

Упростим выражение (строка 5)

Поскольку степень произведения равна произведению степеней каждого из множителей, представим это соответствующим образом (строка 6)

Как видно, по формулам сокращенного умножения имеем разность квадратов двух чисел. Откуда и вычислим значение выражения (строка 7)

Вычислите значение выражения.

Решение .

Пояснение .

Используем свойства корня, что корень произвольной степени частного чисел равен частному корней этих чисел (строка 2)

Корень произвольной степени числа этой же степени равен этому числу (строка 3)

Вынесем из скобки первого множителя минус. При этом все знаки внутри скобки поменяются на противоположные (строка 4)

Выполним сокращение дроби (строка 5)

Представим число 729 как квадрат числа 27, а число 27 как куб числа 3. Откуда и получим значение подкоренного выражения.

Квадратный корень. Начальный уровень.

Хочешь проверить свои силы и узнать результат насколько ты готов к ЕГЭ или ОГЭ?

1. Введение понятия арифметического квадратного корня

Квадратным корнем (арифметическим квадратным корнем) из неотрицательного числа называется такое неотрицательное число, квадрат которого равен.
.

Число или выражение под знаком корня должно быть неотрицательным

2. Таблица квадратов

3. Свойства арифметического квадратного корня

Введение понятия арифметического квадратного корня

Давай попробуем разобраться, что это за понятие такое «корень» и «с чем его едят». Для этого рассмотрим примеры, с которыми ты уже сталкивался на уроках (ну, или тебе с этим только предстоит столкнуться).

К примеру, перед нами уравнение. Какое решение у данного уравнения? Какие числа можно возвести в квадрат и получить при этом? Вспомнив таблицу умножения, ты легко дашь ответ: и (ведь при перемножении двух отрицательных чисел получается число положительное)! Для упрощения, математики ввели специальное понятие квадратного корня и присвоили ему специальный символ.

Дадим определение арифметическому квадратному корню.

А почему же число должно быть обязательно неотрицательным? Например, чему равен? Так-так, попробуем подобрать. Может, три? Проверим: , а не. Может, ? Опять же, проверяем: . Ну что же, не подбирается? Это и следовало ожидать – потому что нет таких чисел, которые при возведении в квадрат дают отрицательное число!

Однако ты наверняка уже заметил, что в определении сказано, что решение квадратного корня из «числа называется такое неотрицательное число, квадрат которого равен ». А в самом начале мы разбирали пример, подбирали числа, которые можно возвести в квадрат и получить при этом, ответом были и, а тут говорится про какое-то «неотрицательное число»! Такое замечание вполне уместно. Здесь необходимо просто разграничить понятия квадратных уравнений и арифметического квадратного корня из числа. К примеру, не равносильно выражению.

А из следует, что.

Конечно, это очень путает, но это необходимо запомнить, что знаки являются результатом решения уравнения, так как при решении уравнения мы должны записать все иксы, которые при подстановке в исходное уравнение дадут верный результат. В наше квадратное уравнение подходит как, так и.

Однако, если просто извлекать квадратный корень из чего-либо, то всегда получаем один неотрицательный результат .

А теперь попробуй решить такое уравнение. Уже все не так просто и гладко, правда? Попробуй перебрать числа, может, что-то и выгорит?

Начнем с самого начала – с нуля: – не подходит, двигаемся дальше; – меньше трех, тоже отметаем, а что если? Проверим: – тоже не подходит, т.к. это больше трех. С отрицательными числами получится такая же история. И что же теперь делать? Неужели перебор нам ничего не дал? Совсем нет, теперь мы точно знаем, что ответом будет некоторое число между и, а также между и. Кроме того, очевидно, что решения не будут целыми числами. Более того, они не являются рациональными. И что дальше? Давай построим график функции и отметим на нем решения.

Попробуем обмануть систему и получить ответ с помощью калькулятора! Извлечем корень из, делов-то! Ой-ой-ой, выходит, что Такое число никогда не кончается. Как же такое запомнить, ведь на экзамене калькулятора не будет!? Все очень просто, это и не надо запоминать, необходимо помнить (или уметь быстро прикинуть) приблизительное значение. и уже сами по себе ответы. Такие числа называются иррациональными, именно для упрощения записи таких чисел и было введено понятие квадратного корня.
Рассмотрим еще один пример для закрепления. Разберем такую задачку: тебе необходимо пересечь по диагонали квадратное поле со стороной км, сколько км тебе предстоит пройти?

Самое очевидное здесь рассмотреть отдельно треугольник и воспользоваться теоремой Пифагора: . Таким образом, . Так чему же здесь равно искомое расстояние? Очевидно, что расстояние не может быть отрицательным, получаем, что. Корень из двух приблизительно равен, но, как мы заметили раньше, -уже является полноценным ответом.

Извлечение корней

Чтобы решение примеров с корнями не вызывало проблем, необходимо их видеть и узнавать. Для этого необходимо знать, по меньшей мере, квадраты чисел от до, а также уметь их распознавать.

То есть, тебе необходимо знать, что в квадрате равно, а также, наоборот, что – это в квадрате. Первое время в извлечении корня тебе поможет эта таблица.

Как только ты прорешаешь достаточное количество примеров, то надобность в ней автоматически отпадет.
Попробуй самостоятельно извлечь квадратный корень в следующих выражениях:

Ну как, получилось? Теперь давай посмотрим такие примеры:

Свойства арифметического квадратного корня

Теперь ты знаешь, как извлекать корни и пришло время узнать о свойствах арифметического квадратного корня. Их всего 3:

  • умножение;
  • деление;
  • возведение в степень.

Их ну просто очень легко запомнить с помощью этой таблицы и, конечно же, тренировки:

Как решать
квадратные уравнения

В предыдущих уроках мы разбирали «Как решать линейные уравнения», то есть уравнения первой степени. В этом уроке мы разберем, что называют квадратным уравнением и как его решать.

Что называют квадратным уравнением

Степень уравнения определяют по наибольшей степени, в которой стоит неизвестное.

Если максимальная степень, в которой стоит неизвестное - « 2 », значит, перед вами квадратное уравнение.

Примеры квадратных уравнений

  • 5x 2 − 14x + 17 = 0
  • −x 2 + x +

Чтобы найти « a », « b » и « c » нужно сравнить свое уравнение с общим видом квадратного уравнения « ax 2 + bx + c = 0 ».

Давайте потренируемся определять коэффициенты « a », « b » и « c » в квадратных уравнениях.

  • a = 5
  • b = −14
  • с = 17
  • a = −7
  • b = −13
  • с = 8
  • a = −1
  • b = 1
  • a = 1
  • b = 0,25
  • с = 0
  • a = 1
  • b = 0
  • с = −8

Как решать квадратные уравнения

В отличии от линейных уравнений для решения квадратных уравнений используется специальная формула для нахождения корней .

Чтобы решить квадратное уравнение нужно:

  • привести квадратное уравнение к общему виду « ax 2 + bx + c = 0 ». То есть в правой части должен остаться только « 0 »;
  • использовать формулу для корней:

Давайте на примере разберем, как применять формулу для нахождения корней квадратного уравнения. Решим квадратное уравнение.

Уравнение « x 2 − 3x − 4 = 0 » уже приведено к общему виду « ax 2 + bx + c = 0 » и не требует дополнительных упрощений. Для его решения нам достаточно применить формулу нахождения корней квадратного уравнения .

Определим коэффициенты « a », « b » и « c » для этого уравнения.

  • a = 1
  • b = −3
  • с = −4

Подставим их в формулу и найдем корни.

Обязательно выучите наизусть формулу для нахождения корней.

С её помощью решается любое квадратное уравнение.

Рассмотрим другой пример квадратного уравнения.

В данном виде определить коэффициенты « a », « b » и « c » довольно сложно. Давайте вначале приведем уравнение к общему виду « ax 2 + bx + c = 0 ».

Теперь можно использовать формулу для корней.

Бывают случаи, когда в квадратных уравнениях нет корней. Такая ситуация возникает, когда в формуле под корнем оказывается отрицательное число.

Мы помним из определения квадратного корня о том, что извлекать квадратный корень из отрицательного числа нельзя.

Рассмотрим пример квадратного уравнения, у которого нет корней.

Итак, мы получили ситуацию, когда под корнем стоит отрицательное число. Это означает, что в уравнении нет корней. Поэтому в ответ мы так и записали «Нет действительных корней».

Что означают слова «нет действительных корней»? Почему нельзя просто написать «нет корней»?

На самом деле корни в таких случаях есть, но в рамках школьной программы они не проходятся, поэтому и в ответ мы записываем, что среди действительных чисел корней нет. Другими словами «Нет действительных корней».

Неполные квадратные уравнения

Иногда встречаются квадратные уравнения, в которых отсутсвуют в явном виде коэффициенты « b » и/или « c ». Как например, в таком уравнении:

Такие уравнения называют неполными квадратными уравнениями. Как их решать рассмотрено в уроке «Неполные квадратные уравнения».

Извлечение квадрантного корня из числа не единственная операция, которую можно производить с этим математическим явлением. Так же как и обычные числа, квадратные корни складывают и вычитают.

Yandex.RTB R-A-339285-1

Правила сложения и вычитания квадратных корней

Определение 1

Такие действия, как сложение и вычитание квадратного корня, возможны только при условии одинакового подкоренного выражения.

Пример 1

Можно сложить или вычесть выражения 2 3 и 6 3 , но не 5 6 и 9 4 . Если есть возможность упростить выражение и привести его к корням с одинаковым подкоренным числом, то упрощайте, а потом складывайте или вычитайте.

Действия с корнями: основы

Пример 2

6 50 - 2 8 + 5 12

Алгоритм действия:

  1. Упростить подкоренное выражение . Для этого необходимо разложить подкоренное выражение на 2 множителя, один из которых, - квадратное число (число, из которого извлекается целый квадратный корень, например, 25 или 9).
  2. Затем нужно извлечь корень из квадратного числа и записать полученное значение перед знаком корня. Обращаем ваше внимание, что второй множитель заносится под знак корня.
  3. После процесса упрощения необходимо подчеркнуть корни с одинаковыми подкоренными выражениями - только их можно складывать и вычитать.
  4. У корней с одинаковыми подкоренными выражениями необходимо сложить или вычесть множители, которые стоят перед знаком корня. Подкоренное выражение остается без изменений. Нельзя складывать или вычитать подкоренные числа!

Совет 1

Если у вас пример с большим количеством одинаковых подкоренных выражений, то подчеркивайте такие выражения одинарными, двойными и тройными линиями, чтобы облегчить процесс вычисления.

Пример 3

Давайте попробуем решить данный пример:

6 50 = 6 (25 × 2) = (6 × 5) 2 = 30 2 . Для начала необходимо разложить 50 на 2 множителя 25 и 2, затем извлечь корень из 25, который равен 5, а 5 вынести из-под корня. После этого нужно умножить 5 на 6 (множитель у корня) и получить 30 2 .

2 8 = 2 (4 × 2) = (2 × 2) 2 = 4 2 . Сперва необходимо разложить 8 на 2 множителя: 4 и 2. Затем из 4 извлечь корень, который равен 2, а 2 вынести из-под корня. После этого нужно умножить 2 на 2 (множитель у корня) и получить 4 2 .

5 12 = 5 (4 × 3) = (5 × 2) 3 = 10 3 . Сперва необходимо разложить 12 на 2 множителя: 4 и 3. Затем извлечь из 4 корень, который равен 2, и вынести его из-под корня. После этого нужно умножить 2 на 5 (множитель у корня) и получить 10 3 .

Результат упрощения: 30 2 - 4 2 + 10 3

30 2 - 4 2 + 10 3 = (30 - 4) 2 + 10 3 = 26 2 + 10 3 .

В итоге мы увидели, сколько одинаковых подкоренных выражений содержится в данном примере. А сейчас попрактикуемся на других примерах.

Пример 4

  • Упрощаем (45) . Раскладываем 45 на множители: (45) = (9 × 5) ;
  • Выносим 3 из-под корня (9 = 3) : 45 = 3 5 ;
  • Складываем множители у корней: 3 5 + 4 5 = 7 5 .

Пример 5

6 40 - 3 10 + 5:

  • Упрощаем 6 40 . Раскладываем 40 на множители: 6 40 = 6 (4 × 10) ;
  • Выносим 2 из-под корня (4 = 2) : 6 40 = 6 (4 × 10) = (6 × 2) 10 ;
  • Перемножаем множители, которые стоят перед корнем: 12 10 ;
  • Записываем выражение в упрощенном виде: 12 10 - 3 10 + 5 ;
  • Поскольку у первых двух членов одинаковые подкоренные числа, мы можем их вычесть: (12 - 3) 10 = 9 10 + 5 .

Пример 6

Как мы видим, упростить подкоренные числа не представляется возможным, поэтому ищем в примере члены с одинаковыми подкоренными числами, проводим математические действия (складываем, вычитаем и т.д.) и записываем результат:

(9 - 4) 5 - 2 3 = 5 5 - 2 3 .

Советы:

  • Перед тем, как складывать или вычитать, необходимо обязательно упростить (если это возможно) подкоренные выражения.
  • Складывать и вычитать корни с разными подкоренными выражениями строго воспрещается.
  • Не следует суммировать или вычитать целое число или корень: 3 + (2 x) 1 / 2 .
  • При выполнении действий с дробями, необходимо найти число, которое делится нацело на каждый знаменатель, потом привести дроби к общему знаменателю, затем сложить числители, а знаменатели оставить без изменений.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter