Что такое истинное высказывание. Установление истинности сложных высказываний

Урок №2

Алгебра высказываний. Логические операции.

(урок комбинированный, включающий повторение предыдущей темы,

введение нового материала и закрепление)

Цель урока: Сформировать у учащихся понятия: логическое высказывание, логические операции.

Задачи урока :

Повторить основные материалы 1 урока (формы человеческого мышления: понятие, суждение, умозаключение);

Познакомить с определением алгебры высказываний;

Познакомить с основными логическими операциями.

Требования к знаниям и умениям:

Учащиеся должны знать:

Что изучает алгебра высказываний и что является объектом изучения алгебры высказываний;

Значения понятий: логическое высказывание, логические операции;

Таблицы истинности логических операций.

Учащиеся должны уметь:

Приводить примеры логических высказываний;

Определять значения логических высказываний;

Называть логические операции и строить для них таблицы истинности.

Этапы урока

I. Организационный момент. Постановка цели урока. 2 мин.

II. Повторение. 7мин.

III. Проверка домашнего задания. 5 мин.

IV. Введение нового материала. 20 мин.

V. Закрепление. 7 мин.

VI. Подведение итогов урока. 3 мин.

VII. Постановка домашнего задания. 1 мин.

Ход урока

II. Повторение .

1) Повторение основных определений и понятий 1 урока:

· Понятие – форма мышления, в которой отражены существенные признаки объектов.

o Объём понятия – множество предметов, каждому из которых принадлежат признаки, составляющие содержание понятия.

Привести примеры .

· Суждение (высказывание, утверждение) - форма мышления, в которой что-либо утверждается или отрицается о предметах, их свойствах или отношениях между ними.

o Форма суждения – это его строение, способ связи его составных частей.

· Умозаключение - форма мышления, посредством которой из одного или нескольких суждений, называемых посылками, по определенным правилам вывода получаем суждение-заключение (вывод умозаключения)

- Определите, какие из перечисленных фраз являются высказываниями и почему?

1. Как хорошо быть генералом!

2.

3. Познай самого себя.

4. Все медведи живут на севере.

5. Революция не может быть мирной и бескровной.

6.

7.

(Примеры 1 и 3 не являются высказываниями, т. к. являются восклицательным и побудительным предложениями соответственно).

- Теперь определите, простые или составные суждения даны .

(В 5 примере можно разбить на два простых утверждения, значит, оно составное.)

- Определите значения высказываний (истина или ложь).

На 6 примере убеждаемся, что содержание высказывания часто субъективная характеристика. Обоснование истинности или ложности простых высказываний решается вне науки логики. Например, опираясь на свой жизненный опыт, мы присваиваем определённое значение суждению 6.

Русские пословицы как в примере 4 будут всегда истинны, т. к. опираются на жизненный опыт целых поколений людей.

В примере 7 значение высказывания решается в курсе геометрии, а в 5 утверждении в курсе истории.

Результаты оформляются в виде следующей таблицы:

Фразы

Высказывания

Истина или ложь

Простые высказывания

1. Как хорошо быть генералом!

2. Без труда не выловишь и рыбку из пруда.

3. Познай самого себя.

4. Все медведи живут на севере.

5. Революция не может быть мирной и бескровной.

6. Талант всегда пробьёт себе дорогу.

7. Сумма углов треугольника равна 1800.

На прошлом уроке мы говорили, что каждое высказывание состоит из трех элементов:
субъекта, предиката и связки . Субъект (S) - понятие о предмете. Предикат (P) - понятие о свойствах и отношениях предмета. Связка - отношение между субъектом и предикатом.

Определите, что в простых высказываниях является субъектом, предикатом и связкой.

Без труда не выловишь и рыбку из пруда.

Все медведи живут на севере.

Талант всегда пробьёт себе дорогу.

Сумма углов треугольника равна 1800.

III. Проверка домашнего задания:

Карточка для домашней работы

1.Из приведенных простых высказываний составьте и запишите не менее 3-ёх составных высказываний:

1) Поедем на дачу.

2) Хорошая погода.

3) Плохая погода.

4) Мы поедем на пляж.

5) Антон приглашает нас в театр .

2. Выведите, если это возможно, заключение из каждой пары посылок:

А) Все птицы – животные.

Все воробьи – птицы.

Б) Некоторые уроки трудны.

Всё, что трудно, требует внимания.

В) Ни один добрый поступок не является незаконным.

Всё, что законно, можно делать без страха.

А) Тем, кто лыс, расчёска не нужна.

Ни одна ящерица не имеет волос.

Следовательно, ящерицам расчёска не нужна.

Б) Всем, кто отлично закончит 3 четверть, подарят компьютер.

Ты закончил 3 четверть без троек.

Значит, готовься получить в подарок компьютер.

VI. Объяснение нового материала

Алгебра высказываний

Идею о возможности математизации логики высказал еще в XVII веке. Он пытался создать универсальный язык, с помощью которого каждому понятию и высказыванию можно было бы дать числовую характеристику и установить такие правила оперирования с этими числами, которые позволили бы сразу определить, истинно данное высказывание или ложно. То есть споры между людьми можно было бы разрешать посредством вычислений. Идея Лейбница оказалось ложной, так как невозможно (не найдены способы) свести человеческое мышление к некоторому математическому исчислению.

Однако, подлинный прогресс этой науки был достигнут в середине XIX века прежде всего благодаря трудам Дж. Буля "Математический анализ логики". Он перенес на логику законы и правила алгебраических действий, ввёл логические операции, предложил способ записи высказываний в символической форме.

В развитии математической логики приняли участие многие выдающиеся математики и логики конца XIX и XX веков, в том числе К. Гедель (австр.), Д. Гильберт (нем.), С. Клини (амер.), Э. Пост (амер.), А. Тьюринг (анг.), А. Чёрч (амер.), и многие другие.

Современная математизированная формальная логика представляет собой обширную научную область, которая находит широкое применение как внутри математики (исследование оснований математики), так и вне ее (синтез и анализ автоматических устройств, теоретическая кибернетика, в частности, искусственный интеллект).

Таким образом, объектами изучения алгебры логики являются высказывания.

Под высказыванием (суждением) будем понимать повествовательное предложение, относительно которого можно однозначно сказать, истинно оно или ложно.

Обозначать высказывания будем большими латинскими буквами. Если высказывание А истинное, то будем писать "А = 1" и говорить: "А - истинно". Если высказывание Х ложно, то будем писать "Х = 0" и говорить "Х ложно".

Обоснование истинности или ложности простых высказываний решается вне алгебры логики. Например, истинность или ложность высказывания «Сумма углов треугольника равно 180о» устанавливается геометрией, причём в геометрии Евклида это высказывание является истинным, а в геометрии Лобачевского – ложным.

Алгебра логики отвлекается от смыслового содержания высказываний. Её интересует только один факт – истинно или ложно данное высказывание. Такое суждение интересов даёт возможность изучать высказывания алгебраическими методами.

Логические операции

В алгебре логики над высказываниями можно производить различные операции (как и в алгебре действительных чисел определены операции сложения, деления, возведения в степень над числами). Мы рассмотрим только некоторые, наиболее важные из них:

    Дизъюнкция (логическое сложение) Импликация (логическое следование) Эквивалентность (логическое равенство)

1) Инверсия (логическое отрицание)

Инверсия (логическое отрицание) – это логическая операция, которая каждому данному высказыванию ставит в соответствие новое высказывание, которое истинно, если данное высказывание – ложно, и ложно, если данное высказывание истинно.

Логические операции задаются таблицами истинности и могут быть графически проиллюстрированы с помощью кругов Эйлера , названных в честь великого математика, физика и астронома Леонарда Эйлера ()

Обозначение инверсии: ; неА ; А; NOT А

0 " style="border-collapse:collapse;border:none">

А

Образуется из простого высказывания с помощью добавления частицы НЕ к сказуемому или использованием оборота речи "НЕВЕРНО, ЧТО...".

Пример: А = "На улице дождь"

= "Неверно, что на улице дождь"

Задание 1. Приведите пример высказывания и его отрицания.

Определите истинность каждого.

Итак, инверсия высказывания истинна, когда высказывание ложно.

2) Конъюнкция (логическое умножение)

истинно тогда и только тогда, когда оба исходных высказывания истинны.

Обозначение конъюнкции: А &В , А andВ , А LВ , А В .

Таблица истинности:

А &В

Образуется соединением двух высказываний в одно с помощью союза «И»

Пример: А = "На улице дождь"

В= "Небо голубое"

А &В = "На улице дождь и небо голубое"

Задание 2. а) Приведите примеры двух высказываний и получите составное высказывание используя логическую связку "И".

Итак, конъюнкция двух высказываний истинна тогда и только тогда, когда оба исходных высказывания истинны.

3) Дизъюнкция (логическое сложение) – это логическая операция, ставящая в соответствие каждым двум высказываниям новое высказывание, которое

истинно тогда и только тогда, когда хотя бы одно из двух исходных высказываний истинно.

Обозначение дизъюнкции: А V В , А OR В , А +В .

0 " style="border-collapse:collapse;border:none">

А V В

Образуется соединением двух высказываний в одно с помощью союза «ИЛИ»

Пример: А = "На улице дождь"

В= "Небо голубое"

А V В = "На улице дождь или небо голубое"

Задание 3. а) Приведите примеры двух высказываний и получите составное высказывание используя связку "ИЛИ".

Итак, дизъюнкция двух высказываний истинна тогда и только тогда, когда хотя бы одно из двух исходных высказываний истинно.

4) Импликация (логическое следование) – это логическая операция, ставящая в соответствие каждым двум высказываниям новое высказывание, которое

ложно тогда и только тогда, когда первое высказывание (условие) истинно, а второе высказывание (следствие) ложно.

Обозначение дизъюнкции: А ® В .

Таблица истинности: Диаграмма Эйлера:

«ЕСЛИ …, ТО …»

Если клятва дана, то она должна выполняться.

Если число делится на 9, то оно делится и на 3.

Пример: А = " На улице дождь"

В= "Небо голубое"

А ® В = "Если на улице дождь, то небо голубое"

Задание 4 . а) Приведите примеры двух высказываний и получите составное высказывание, используя связку "ЕСЛИ, ТО...".

б) Определите истинность или ложность каждого из трех высказываний

Итак, импликация двух высказываний ложна тогда и только тогда, когда первое высказывание (условие) истинно, а второе высказывание (следствие) ложно.

5) Эквивалентность (логическое равенство) – это логическая операция, ставящая в соответствие каждым двум высказываниям новое высказывание, которое

истинно тогда и только тогда, когда оба исходных высказывания одновременно истинны или одновременно ложны.

Обозначение дизъюнкции: А « В, А = В, А≡В .

Таблица истинности: Диаграмма Эйлера:


Образуется соединением двух высказываний в одно с помощью оборота речи «…ТОГДА И ТОЛЬКО ТОГДА, КОГДА…»

Угол называется прямым тогда и только тогда, когда он равен 900

Все законы математики, физики, все определения – эквивалентность высказываний

Две прямые параллельны тогда и только тогда, когда они не пересекаются.

Пример: А = "На улице дождь"

В= "Небо голубое"

А « В = "На улице дождь тогда и только тогда, когда небо голубое"

Задание 5. а) Приведите примеры двух высказываний и получите составное высказывание используя связку речи «…ТОГДА И ТОЛЬКО ТОГДА, КОГДА…»

б) Определите истинность или ложность каждого из трех высказываний.

Итак, эквивалентность двух высказываний истинна тогда и только тогда, когда оба исходных высказывания одновременно истинны или одновременно ложны.

VI. Закрепление изученного.

1. Объясните, почему следующие предложения не являются высказываниями :

· Какого цвета этот дом?

· Число Х не превосходит единицы.

· Посмотрите в окно.

· Пейте томатный сок!

· Эта тема скучна.

· Вы были в театре?

2. Объясните, почему формулировка любой теоремы является высказыванием.

3. Приведите по 2 примера истинных и ложных высказываний из математики, биологии, истории, информатики, литературы.

4. Из следующих предложений выбрать те, которые являются высказываниями:

    Коля спросил: «Как пройти к Большому театру?» Как пройти в библиотеку? Картины Пикассо слишком абстрактны. Решение задачи – информационный процесс. Число 2 является делителем числа 7 в некоторой системе счисления.

5. Выбрать истинные высказывания:

· “Число 28 является совершенным числом”

· “Без труда не выловишь и рыбку из пруда”

· “Талант всегда пробьёт себе дорогу”

· “Некоторые животные мыслят”

· “Информатика - наука об алгоритмах”

· “2+3*5=30”

· “Все ученики любят информатику”

6.

7. Какая логическая операция соответствует данной таблице истинности?

8. Какая логическая операция соответствует данной таблице истинности?

9. Какая логическая операция соответствует данной таблице истинности?

10. Какая логическая операция соответствует данной таблице истинности?

Итог урока:

    Вы познакомились с основными понятиями алгебры логики. Рассмотрели логические операции. Разобрали для каждой логической операции таблицу истинности и проиллюстрировали ЛО с помощью кругов Эйлера.

2. Выучить все определения в тетради из конспекта урока .

3. Подобрать высказывания для каждой логической операциипримера)

Установление истинности сложных высказываний.

Пример 1. Установить истинность высказывания · С

Решение. В состав сложного высказывания входят 3 простых высказывания: А, В, С. В таблице заполняются колонки значениями (0, 1). Указываются все возможные ситуации. Простые высказывания от сложных отделяются двойной вертикальной чертой.
При составлении таблицы надо следить за тем, чтобы не перепутать порядок действий; заполняя столбцы, следует двигаться “изнутри наружу”, т.е. от элементарных формул к более и более сложным; столбец, заполняемый последним, содержит значения исходной формулы.

А В С А+ · С

Из таблицы видно, что данное высказывание истинно только в случае, когда А=0, В=1, С=1. Во всех остальных случаях оно ложно.

13. Равносильные формулы.

Две формулы А и В называются равносильными, если они принимают одинаковые логические значения при любом наборе значений входящих в формулу элементарных высказываний.

Равносильность обозначается знаком « ». Для преобразования формул в равносильные важную роль играют основные равносильности, выражающие одни логические операции через другие, равносильности, выражающие основные законы алгебры логики.

Для любых формул А , В , С справедливы равносильности.

I. Основные равносильности

закон идемпотентности

1-истина

0-ложь

Закон противоречия

Закон исключенного третьего

закон поглощения

формулы расщепления

закон склеивания

II. Равносильности, выражающие одни логические операции через другие.

закон де Моргана

III. Равносильности, выражающие основные законы алгебры логики.

коммутативный закон

ассоциативный закон

дистрибутивный закон

14. Формулы логики высказываний.

Виды формул классической логики высказываний – в логике высказываний различают следующие виды формул:

1. Законы (тождественно-истинные формулы) – формулы, которые при любых интерпретациях пропозициональных переменных принимают значение «истинно» ;

2. Противоречия (тождественно-ложные формулы) – формулы, которые при любых интерпретациях пропозициональных переменных принимают значение «ложно» ;

3. Выполнимые формулы – такие, которые принимают значение «истинно» хотя бы при одном наборе значений истинности входящих в их состав пропозициональных переменных.

Основные законы классической логики высказываний:

1. Закон тождества: ;

2. Закон противоречия: ;

3. Закон исключенного третьего: ;

4. Законы коммутативности и : , ;

5. Законы дистрибутивности относительно ,и наоборот: , ;

6. Закон удаления истинного члена конъюнкции: ;

7. Закон удаления ложного члена дизъюнкции: ;

8. Закон контрапозиции: ;

9. Законы взаимовыразимости пропозициональных связок: , , , , , .

Процедура разрешимости – метод, позволяющий для каждой формулы установить является она законом, противоречием или выполнимой формулой. Самой распространенной процедурой разрешимости является метод истинностных таблиц. Однако он не единственный. Эффективным методом разрешимости является метод нормальных форм для формул логики высказываний. Нормальной формой формулы логики высказываний является форма, не содержащая знака импликации « ». Различают конъюнктивную и дизъюнктивную нормальные формы. Конъюнктивная форма содержит только знаки конъюнкции « ». Если в формуле, приведенной к конъюнктивной нормальной форме, встречается подформула вида , то вся формула в этом случае является противоречием . Дизъюнктивная форма содержит только знаки дизъюнкции « ». Если в формуле, приведенной к дизъюнктивной нормальной форме, встречается подформула вида , то вся формула в этом случае является законом . Во всех остальных случаях формула является выполнимой формулой .

15. Предикаты и операции над ними. Кванторы.

Предложение, содержащее одну или несколько переменных и которое при конкретных значениях переменных является высказыванием, называется высказывательной формой или предикатом.

В зависимости от числа переменных, входящих в предложение, различают одноместные, двухместные, трехместные и т.д. предикаты, обозначаемые соответственно: А(х ), В(х , у ), С(х , у , z ).

Если задан некоторый предикат, то с ним связаны два множества:

1. Множество (область) определения Х , состоящее из всех значений переменных, при подстановке которых в предикат последний обращается в высказывание. При задании предиката обычно указывают его область определения.

2. Множество истинности Т, состоящее из всех тех значений переменных, при подстановке которых в предикат получается истинное высказывание.

Множество истинности предиката всегда является подмножеством его области определения, то есть .

Над предикатами можно совершать те же операции, что и над высказываниями.

1. Отрицанием предиката А(х ), заданного на множестве Х, называется предикат , истинный при тех значениях , при которых предикат А(х ) обращается в ложное высказывание, и наоборот.

Из данного определения следует, что предикаты А(х ) и В(х ) не являются отрицаниями друг друга, если найдется хотя бы одно значение , при котором предикаты А(х ) и В(х ) обращаются в высказывания с одинаковыми значениями истинности.

Множество истинности предиката является дополнением к множеству истинности предиката А(х ). Обозначим через Т А множество истинности предиката А(х ), а через Т - множество истинности предиката . Тогда .

2. Конъюнкцией предикатов А(х ) и В(х х ) В(х х Х, при которых оба предиката обращаются в истинные высказывания.

Множество истинности конъюнкции предикатов есть пересечение множеств истинности предиката А(х ) В(х ). Если обозначить множество истинности предиката А(х) через Т А, а множество истинности предиката В(х) через Т В и множество истинности предиката А(х) В(х) через , то

3. Дизъюнкцией предикатов А(х) и В(х ), заданных на множестве Х, называется предикат А(х ) В(х ), обращающийся в истинное высказывание при тех и только тех значениях х Х, при которых хотя бы один из предикатов обратился в истинное высказывание.



Множество истинности дизъюнкции предикатов есть объединение множеств истинности образующих ее предикатов, т.е. .

4.Импликацией предикатов А(х ) и В(х ), заданных на множестве Х, называется предикат А(х ) В(х ), который ложен при тех и только тех значениях переменной, при которых первый предикат обращается в истинное высказывание, а второй – в ложное.

Множество истинности импликации предикатов есть объединение множества истинности предиката В(х ) с дополнением к множеству истинности предиката А(х ), т.е.

5. Эквиваленцией предикатов А(х ) и В(х ), заданных на множестве Х, называется предикат , который обращается в истинное высказывание при всех тех и только тех значениях переменной, при которых оба предиката обращаются либо в истинные высказывания, либо в ложные высказывания.

Множество истинности эквиваленции предикатов есть пересечение множества истинности предиката с множеством истинности предиката .

Кванторные операции над предикатами

Предикат можно перевести в высказывание способом подстановки и способом «навешивание квантора».

Про числа 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 можно сказать: а) все данные числа простые; б) некоторые из данных чисел четные.

Так как относительно этих предложений можно сказать, что они истинны или ложны, то полученные предложения – высказывания.

Если из предложения «а» убрать слово «все», а из предложения «б» - слово «некоторые», то получим следующие предикаты: «данные числа простые», «данные числа нечетные».

Слова «все» и «некоторые» называются кванторами. Слово «квантор» латинского происхождения и означает «сколько», т. е. квантор показывает, о скольких (всех или некоторых) объектах говорится в том или ином предложении.

Различают два основных вида кванторов: квантор общности и квантор существования.

Термины «всякий», «любой», «каждый» носят название квантор всеобщности. Обозначается .

Пусть А(х ) – определенный предикат, заданный на множестве Х. Под выражением А(х ) будем понимать высказывание истинное, когда А(х ) истинно для каждого элемента из множества Х, и ложное в противном случае.

Истинность высказываний с квантором общности устанавливается путем доказательства. Чтобы убедиться в ложности таких высказываний (опровергнуть их), достаточно привести контрпример.

16. Определение бинарного отношения между множествами А и В.

Бинарным отношением между множествами A и B называется подмножество R прямого произведения . В том случае, когда можно просто говорить об отношении R на A .

Пример 1 . Выпишите упорядоченные пары, принадлежащие бинарным отношениям R 1 и R 2 , заданными на множествах A и : , . Подмножество R 1 состоит из пар: . Подмножество .

Область определения R на есть множество всех элементов из A таких, что для некоторых элементов имеем . Иными словами область определения R есть множество всех первых координат упорядоченных пар из R .

Множество значений отношения R на есть множество всех таких, что для некоторых . Другими словами множество значений R есть множество всех вторых координат упорядоченных пар из R .

В примере 1 для R 1 область определения: , множество значений - . Для R 2 область определения: , множество значений: .

Во многих случаях удобно использовать графическое изображение бинарного отношения. Оно осуществляется двумя способами: с помощью точек на плоскости и с помощью стрелок.

В первом случае выбирают две взаимно перпендикулярные линии в качестве горизонтальной и вертикальной осей. На горизонтальной оси откладывают элементы множества A и через каждую точку проводят вертикальную линию. На вертикальной оси откладывают элементы множества B , через каждую точку проводят горизонтальную линию. Точки пересечения горизонтальных и вертикальных линий изображают элементы прямого произведения

17. Способы задания бинарных отношений.

Всякое подмножество декартова произведения A×B называется бинарным отношением, определенным на паре множеств A и B (по латыни «бис» обозначает «дважды»). В общем случае по аналогии с бинарными можно рассматривать и n-арные отношения как упорядоченные последовательностиn элементов, взятых по одному из n множеств.

Для обозначения бинарного отношения применяют знак R. Поскольку R- это подмножество множества A×B, то можно записать R⊆A×. Если же требуется указать, что (a, b) ∈ R, т. е. между элементами a ∈ A и b ∈ B существует отношение R, то пишут aRb.

Способы задания бинарных отношений:

1. Это использование правила, согласно которому указываются все элементы, входящие в данное отношение. Вместо правила можно привести список элементов заданного отношения путем непосредственного их перечисления;

2. Табличный, в виде графов и с помощью сечений. Основу табличного способа составляет прямоугольная система координат, где по одной оси откладываются элементы одного множества, по второй - другого. Пересечения координат образуют точки, обозначающие элементы декартова произведения.

На (рисунке 1.16) изображена координатная сетка для множеств. Точкам пересечения трех вертикальных линий с шестью горизонтальными соответствуют элементы множества A×B. Кружочками на сетке отмечены элементы отношения aRb, где a ∈ A и b ∈ B, R обозначает отношение «делит».

Бинарные отношения задаются двухмерными системами координат. Очевидно, что все элементы декартова произведения трех множеств аналогично могут быть представлены в трехмерной системе координат, четырех множеств- в четырехмерной системе и т. д;

3. Способ задания отношений с помощью сечений используется реже, поэтому рассматривать его не будем.

18. Рефлексивность бинарного отношения. Пример.

В математике бинарное отношение на множестве называется рефлексивным, если всякий элемент этого множества находится в отношении с самим собой.

Свойство рефлексивности при заданных отношениях матрицей характеризуется тем, что все диагональные элементы матрицы равняются 1; при заданных отношениях графом каждый элемент имеет петлю - дугу (х, х).

Если это условие не выполнено ни для какого элемента множества, то отношение называется антирефлексивным.

Если антирефлексивное отношение задано матрицей, то все диагональные элементы являются нулевыми. При задании такого отношения графом каждая вершина не имеет петли - нет дуг вида (х, х).

Формально антирефлексивность отношения определяется как: .

Если условие рефлексивности выполнено не для всех элементов множества, говорят, что отношение нерефлексивно.

1.1 . Какие из следующих предложений являются высказываниями?

а) Москва  столица России.

б) Студент физико-математического факультета педагогического института.

в) Треугольник ABC подобен треугольнику А"В"С".

г) Луна есть спутник Марса.

е) Кислород  газ.

ж) Каша  вкусное блюдо.

з) Математика  интересный предмет.

и) Картины Пикассо слишком абстрактны.

к) Железо тяжелее свинца.

л) Да здравствуют музы!

м) Треугольник называется равносторонним, если его стороны равны.

н) Если в треугольнике все углы равны, то он равносторонние.

о) Сегодня плохая погода.

п) В романе А. С. Пушкина «Евгений Онегин» 136 245 букв.

р) Река Ангара впадает в озеро Байкал.

Решение . б) Это предложение не является высказыванием, потому что оно ничего не утверждает о студенте.

в) Предложение не является высказыванием: мы не можем определить, истинно оно или ложно, потому что не знаем, о каких именно треугольниках идет речь.

ж) Предложение не является высказыванием, так как понятие «вкусное блюдо» слишком неопределенно.

п) Предложение  высказывание, но для выяснения его значения истинности нужно затратить немало времени.

1.2. Укажите, какие из высказываний предыдущей задачи истинные, а какие  ложные.

1.3. Сформулируйте отрицания следующих высказываний; укажите значения истинности данных высказываний и их отрицаний:

а) Волга впадает в Каспийское море.

б) Число 28 не делится на число 7.

д) Все простые числа нечетны.

1.4. Установите, какие из высказываний в следующих парах являются отрицаниями друг друга и какие  нет (объясните почему):

а) 2 < 0, 2 > 0. -

б) 6 < 9, 6  9.

в) «Треугольник ABC прямоугольный», «Треугольник ABC тупоугольный».

г) «Натуральное число n четно», «Натуральное число n нечетно».

д) «Функция f нечетна», «Функция f четна».

е) «Все простые числа нечетны», «Все простые числа четны».

ж) «Все простые числа нечетны», «Существует простое четное число».

з) «Человеку известны все виды животных, обитающих на Земле», «На Земле существует вид животных, не известный человеку».

и) «Существуют иррациональные числа», «Все числа рациональные».

Решение. а) Высказывание «2 > 0» не является отрицанием "высказывания «2 < 0», потому что требование не быть меньше 0 оставляет две возможности: быть равным 0 и быть больше 0. Таким образом, отрицанием высказывания «2 < 0» является высказывание «2  0».

1.5. Следующие высказывания запишите без знака отрицания:

а)
; в)
;

б)
; г)
.

1.6.

а) Ленинград расположен на Неве и 2 + 3 = 5.

б) 7  простое число и 9  простое число.

в) 7  простое число или 9  простое число.

г) Число 2 четное или это число простое.

д) 2  3, 2  3, 2 2  4, 2 2  4.

е) 2 2 = 4 или белые медведи живут в Африке.

ж) 2 2 = 4, и 2 2  5, и 2 2  4.

Решение. а) Так как оба простых высказывания, к которым применяется операция конъюнкции, истинны, поэтому на основании определения этой операции и их конъюнкция есть истинное высказывание.

1.7. Определите значения истинности высказываний А, В, С, D и Е, если:

 истинные высказывания, а

 ложные.

Решение. в) Дизъюнкция высказываний есть истинное высказывание лишь в случае, когда по меньшей мере одно из входящих в дизъюнкцию составляющих высказываний (членов дизъюнкции) истинно. В нашем случае второе составляющее высказывание «2 2 = 5» ложно, а дизъюнкция двух высказываний истинна. Поэтому первое составляющее высказывание С истинно.

1.8. Сформулируйте и запишите в виде конъюнкции или дизъюнкции условие истинности каждого предложения (а и b - действительные числа):

а)
г)ж)

б)
д)
з)

в)
е)
и)

Решение. г) Дробь равна нулю лишь в случае, когда числитель равен нулю и знаменатель не равен нулю, т. е. (а = 0) & (b  0).

1.9. Определите значения истинности следующих высказываний:

а) Если 12 делится на 6, то 12 делится на 3.

б) Если 11 делится на 6, то 11 делится на 3.

в) Если 15 делится на 6, то 15 делится на 3.

г) Если 15 делится на 3, то 15 Делится на 6.

д) Если Саратов расположен на Неве, то белые медведи обитают в Африке.

е) 12 делится на 6 тогда и только тогда, когда 12 делится на 3.

ж) 11 делится на 6 тогда и только тогда, когда 11 делится на 3.

з) 15 делится на 6 тогда и только тогда, когда 15 делится на 3.

и) 15 делится на 5 тогда и только тогда, когда 15 делится на 4.

к) Тело массой m обладает потенциальной энергией mgh тогда и только тогда, когда оно находится на высоте h над поверхностью земли.

Решение. а) Так как высказывание-посылка «12 делится на 6» истинно и, высказывание-следствие «12 делится на 3» истинно, то и составное высказывание на основании определения импликации также истинно.

ж) Из определения эквивалентности видим, что высказывание вида
истинно, если логические значения высказыванийР и Q совпадают, и ложно в противном случае. В данном примере оба высказывания к которым применяется связка «тогда и только тогда», ложны. Поэтому все составное высказывание истинно.

1.10. Пусть через А обозначено высказывание «9 делится на 3», а через В  высказывание «8 делится на 3». Определите значения истинности следующих высказываний:

а)
г)
ж)
к)

б)
д)
з)
л)

в)
е)
и)
м)

Решение. е) Имеем
,
. Поэтому

1.11.

а) Если 4  четное число, то А.

б) Если В, то 4  нечетное число.

в) Если 4  четное число, то С.

г) Если D, то 4  нечетное число.

Решение. а) Импликация двух высказываний есть ложное высказывание лишь в единственном случае, когда посылка истинна, а заключение ложно. В данном случае посылка «4  четное число» истинна и по условию все высказывание также истинно. Поэтому заключение А ложным быть не может, т. е. высказывание А истинно.

1.12. Определите значения истинности высказываний А, В, С и D в следующих предложениях, из которых первые два истинны, а последние два ложны:

а)
; б)
;

в)
; г)
.

1.13. Пусть через А обозначено высказывание «Этот треугольник равнобедренный», а через В  высказывание «Этот треугольник равносторонний». Прочитайте следующие высказывания:

а)
г)

б)
д)

в)
е)

Решение. е) Если треугольник равнобедренный и неравносторонний, то неверно, что он неравнобедренный.

1.14. Следующие составные высказывания расчлените на простые и запишите символически, введя буквенные обозначения для простых их составляющих:

а) Если 18 делится на 2 и не делится на 3, то оно не делится на 6.

б) Произведение трех чисел равно нулю тогда и только тогда, когда одно из них равно нулю.

в) Если производная функция в точке равна нулю и вторая производная этой функции в той же точке отрицательна, то данная точка есть точка максимума этой функции.

г) Если в треугольнике медиана не является высотой и биссектрисой, то этот треугольник не равнобедренный и не равносторонний.

Решение. г) Выделим и следующим образом обозначим простейшие составляющие высказывания:

А: «В треугольнике медиана является высотой»;

В: «В треугольнике медиана является биссектрисой»;

С: «Этот треугольник равнобедренный»;

D: «Этот треугольник равносторонний».

Тогда данное высказывание символически записывается так:

1.15. Из двух данных высказываний А и В постройте составное высказывание с помощью операций отрицания, конъюнкции и дизъюнкции, которое было бы:

а) истинно тогда и только тогда, когда оба данных высказывания ложны;

б) ложно тогда и только тогда, когда оба данных высказывания истинны.

1.16. Из трех данных высказываний А, В, С постройте составное высказывание, которое истинно, когда истинно какое-либо одно из данных высказываний, и только в этом случае.

1.17. Пусть высказывание
истинно. Что можно сказать о логическом значении высказывания?

1.18. Если высказывание
истинно (ложно), то что можно сказать о логическом значении высказываний:

а)
; б)
; в)
; г)
?

1.19. Если высказывание
истинно, а высказывание
ложно, то что можно сказать о логическом значении высказывания
?

1.20. Существуют ли три таких высказывания А, В, С, чтобы одновременно высказывание
было истинным, высказывание
 ложным и высказывание
 ложным?

1.21. Для каждого из помещенных ниже высказываний определите, достаточно ли приведенных сведений, чтобы установить его логическое значение. Если достаточно, то укажите это значение. Если недостаточно, то покажите, что возможны и одно, и другое истинностные значения:

Решение. а) Поскольку заключение импликации истинно, то и вся импликация будет истинным высказыванием независимо от логического значения посылки.

Понятие «высказывание» первично. Под высказыванием в логике понимают повествовательное предложение, о котором можно говорить, что оно истинно или ложно. Любое высказывание либо истинно, либо ложно, и никакое высказывание не является одновременно истинным и ложным.

Примеры высказываний: есть четное число», «1 есть простое число». Истинностное значение первых двух высказываний - «истина», истинностное значение последних двух

Вопросительные и восклицательные предложения не являются высказываниями. Определения не являются высказываниями. Например, определение «целое число называется четным, если оно делится на 2» не является высказыванием. Однако повествовательное предложение «если целое число делится на 2, то оно четное» есть высказывание, и притом истинное. В логике высказываний отвлекаются от смыслового содержания высказывания, ограничиваясь рассмотрением его с той позиции, что оно либо истинно, либо ложно.

В дальнейшем будем понимать под значением высказывания его истинностное значение («истина» или «ложь»). Высказывания будем обозначать прописными латинскими буквами, а их значения, т. е. «истина» или «ложь» - соответственно буквами И и Л.

Логика высказываний изучает связи, которые полностью определяются тем, каким образом одни высказывания строятся из других, называемых элементарными. Элементарные высказывания при этом рассматриваются как целые, не разложимые на части, внутренняя структура которых нас не будет интересовать.

Логические операции над высказываниями.

Из элементарных высказываний с помощью логических операций можно получать новые, более сложные высказывания. Истинностное значение сложного высказывания зависит от истинностных значений высказываний, составляющих сложное высказывание. Эта зависимость устанавливается в данных ниже определениях и отражается в истинностных таблицах. В левых столбцах этих таблиц размещаются всевозможные распределения истинностных значений для высказываний, непосредственно составляющих рассматриваемое сложное высказывание. В правом столбце пишут истинностные значения сложного высказывания соответственно распределениям в каждой строке.

Пусть А и В - произвольные высказывания, относительно которых мы не предполагаем, что известны их истинностные значения. Отрицанием высказывания А называется новое высказывание, истинное тогда и только тогда, когда А ложно. Отрицание А обозначается через и читается «не A» или «неверно, что А». Операция отрицания полностью определяется истинностной таблицей

Пример. Высказывание «неверно, что 5 - четное число», имеющее значение И, есть отрицание ложного высказывания «5 - четное число».

С помощью операции конъюнкции из двух высказываний получается одно сложное высказывание, обозначаемое А Д В. По определению, высказывание А Д В истинно тогда и только тогда, когда оба высказывания истинны. Высказывания А и В называются соответственно первым и вторым членами конъюнкции А Д В. Запись «А Д В» читается как «Л и В». Истинностная таблица для конъюнкции имеет вид

Пример. Высказывание «7 - простое число и 6 - нечетное число» ложно, как конъюнкция двух высказываний, одно из которых ложно.

Дизъюнкцией двух высказываний А и В называется высказывание, обозначаемое , истинное в том и только в том случае, когда хотя бы одно из высказываний А и В истинно.

Соответственно этому высказывание А V В ложно в том и только том случае, когда и А и В оба ложны. Высказывания А и В называются соответственно первым и вторым членами дизъюнкции А V В. Читается запись А V В как «A или В». Союз «или» в данном случае носит неразделительный смысл, поскольку высказывание А V В истинно и при истинности обоих членов. Дизъюнкция имеет следующую истинностную таблицу:

Пример. Высказывание «3 Высказывание, обозначаемое , ложное в том и только в том случае, когда А истинно, а В ложно, называется импликацией с посылкой А и заключением В. Высказывание А-+ В читается как «если А, то 5», или «A влечет В», или «из A следует В». Истинностная таблица для импликации такова:

Отметим, что между посылкой и заключением могут отсутствовать причинно-следственные связи, но это не может повлиять на истинность или ложность импликации. Например, высказывание «если 5 - простое число, то биссектриса равностороннего треугольника является медианой» будет истинным, хотя в обычном понимании второе не следует из первого. Истинным также будет высказывание «если 2 + 2 = 5, то 6 + 3 = 9», поскольку истинно его заключение. При данном определении, если заключение истинно, импликация будет истинной независимо от истинностного значения посылки. В том случае, когда ложна посылка, импликация будет истинна независимо от истинностного значения заключения. Эти обстоятельства кратко формулируют так: «истина следует из чего угодно», «из ложного следует все, что угодно».

Пример 1. Установить истинность высказывания · С Решение. В состав сложного высказывания входят 3 простых высказывания: А, В, С.

В таблице заполняются колонки значениями (0, 1). Указываются все возможные ситуации. Простые высказывания от сложных отделяются двойной вертикальной чертой. При составлении таблицы надо следить за тем, чтобы не перепутать порядок действий; заполняя столбцы, следует двигаться “изнутри наружу”, т.е. от элементарных формул к более и более сложным; столбец, заполняемый последним, содержит значения исходной формулы.

А В С А+ · С
0 0 0 1 1 0 0
0 0 1 1 1 0 0
0 1 0 0 0 1 0
0 1 1 0 0 1 1
1 0 0 1 1 0 0
1 0 1 1 1 0 0
1 1 0 0 1 0 0
1 1 1 0 1 0 0

Из таблицы видно, что данное высказывание истинно только в случае, когда А=0, В=1, С=1. Во всех остальных случаях оно ложно.

Вы также можете найти интересующую информацию в научном поисковике Otvety.Online. Воспользуйтесь формой поиска:

Еще по теме 1. Установление истинности сложных высказываний.:

  1. 29. Проблема разрешимости в алгебре высказываний(АВ). Алгоритмы проверки формул алгебры высказываний на тождественную истинность: составление таблицы истинности, выполнение равносильных преобразований (анализ КНФ), алгоритм редукции, алгоритм Квайна. Преимущества и недостатки указанных методов.
  2. Вопрос 6. Исчисление высказываний. Аксиомы. Правило вывода. Вывод. Тождественная истинность выводимых формул (доказать). Непротиворечивость исчисления высказываний. Теорема о полноте исчисления высказываний. Проблема разрешимости. Исчисление высказываний. Проблема разрешимости