Скорость испарения. Испарение - спиши у антошки

СКОРОСТЬ ИСПАРЕНИЯ. Количество воды (толщина слоя воды), испаряющейся за единицу времени с единицы поверхности. С. И. с открытой водной поверхности пропорциональна величине дефицита влажности при температуре испаряющей поверхности Е3- е (где Е - упругость насыщения при температуре испаряющей поверхности), обратно пропорциональна атмосферному давлению и зависит также от скорости ветра. Кроме того, она зависит от размеров и формы испаряющей поверхности. См. закон Дальтона.[ ...]

Скорость испарения воды растениями определяется в основном теми же факторами, что и скорость испарения с поверхности почвы, но благодаря своим регулирующим системам растения могут экономить воду, уменьшая транспирацию. Однако общий расход воды на транспирацию очень велик. На образование 1 кг сухого вещества растения тратят от 300 до 800 кг воды.[ ...]

Скорость испарения в факеле сильно зависит от степени распыливания топлива, которая влияет на величину поверхности испарения и количество испаряющегося топлива. С уменьшением размеров капли сокращается время ее прогрева и повышается скорость испарения.[ ...]

Скорость сушки тем больше, чем меньше етенох клеток проходит частица воды па пути изнутри куска древесины к его поверхности. Длинные оси клеток параллельны оси ствола или ветви, из которых взят кусок древесины. Поэтому на пути, параллельном оси куска, встречается всего меньше стенок клеток, преграждающих путь, н скорость испарения влаги с поперечного разреза гораздо больше, чем с продольного радиального или тапгентального раскола. Больше всего препятствует сушке кора.[ ...]

Обычно подразумевается испарение воды: поступление водяного пара в атмосферу вследствие отрыва наиболее быстродвижу-щихся молекул с поверхности воды, снега, льда, влажной почвы, капелек и кристаллов в атмосфере. Отрываются те молекулы, скорость которых выше средней скорости движения молекул при данной температуре и достаточна для преодоления сил молекулярного притяжения (сцепления). С возрастанием температуры число отрывающихся молекул, стало быть и И., растет. Одновременно молекулы водяного пара, находящегося над испаряющей поверхностью, частично возвращаются в жидкую или твердую фазу. Фактически наблюдаемое И. есть разность двух потоков молекул - отрывающихся от испаряющей поверхности и возвращающихся к ней. Чистая потеря воды путем испарения зависит от близости упругости пара над испаряющей поверхностью к насыщению. При насыщении И. прекращается, т. е. оба потока молекул уравновешиваются. При И. затрачивается при температуре 0° для воды 597 кал тепла и для льда 677 кал на 1 г. Если тепло не подводится извне, то испаряющее тело охлаждается и процесс замедляется. Ср. испаряемость, насыщение, скорость испарения, закон Дальтона.[ ...]

Скорость испарения с водной поверхности возрастает с увеличением ее температуры, дефицита упругости пара над ней и скорости ветра. Влияние ветра вызвано тем, что он относит в сторону пар, поступающий в приводный слой атмосферы, и усиливает турбулентное перемешивание, уносящее пар вверх и заменяющее увлажнившийся воздух более сухим. Скорость испарения несколько увеличивается и с уменьшением атмосферного давления. Наконец на скорость испарения с водной поверхности влияет также прямая солнечная радиация, прогревающая слой воды на глубину, зависящую от прозрачности воды.[ ...]

Скорость испарения с поверхности почвы в первую очередь зависит от ее температуры, а также от влажности воздуха, скорости ветра, содержания воды в почве, ее физических свойств, состояния поверхности и наличия растительности. С увеличением влажности почвы при прочих равных условиях испарение возрастает. Темные почвы сильнее нагреваются солнцем и поэтому испаряют больше воды, чем светлые. Растительность, затеняя почву от солнечных лучей и ослабляя перемешивание воздуха, значительно уменьшает скорость испарения с поверхности почвы.[ ...]

Несколько более летуч, чем октаметил.[ ...]

Скорость (слой) испарения обычно прямо пропорциональна величине Е [Панин, 1987], поэтому среднегодовая скорость испарения оказывается сильновозрастающей функцией амплитуды температурных колебаний поверхности моря.[ ...]

Скорость испарения определяется количеством жидкости, испаряющейся в единицу времени, и зависит от ряда факторов, главные из которых упругость паров, фракционный состав и температурные изменения. Большое значение имеют также площадь испарения, толщина слоя жидкости, коэффициент диффузии паров в воздухе.[ ...]

Скорость испарения УВ зависит от ряда факторов - от упругости паров, фракционного состава температур. Различают потери от больших дыханий, от обратного выдоха и от вентиляции. Для ДНС эти потери составляют около 80 т/год. Учитывая возможные погрешности расчетного метода, весьма актуальными представляются данные “ТатНИПИнефти”, полученные непосредственными замерами на РВС-2000 с температурой нефти 29-25 °С . Дыхательная арматура резервуара была оснащена двумя дыхательными и двумя предохранительными клапанами НКМД-350 и КПР 1-350. Количество выделяемого из нефти газа составляло от 0,01 до 0,28 м3/м3. Состав газа характеризовался следующими данными (объем, %): Н28 - 0,30; С02 - 13,27; СН4 - 40,31; С2Н6 - 10,03; С3Н8 - 20,49; г-СН2 - 4,47; и-С4Н10 - 7,78; г-С5Н12 - 1,53; и-С5Н12 - 1,22; £С6+ высшие - 0,6.[ ...]

Скорость испарения во всех трех направлениях неодинакова: наименьшая - в радиальном направлении и наибольшая - по длине волокон.[ ...]

Скорость испарения жидкого хлора в стальной таре при температуре помещения 18° С примерно составляет: из одного баллона 0,5-0,7 кг/ч, с 1 м2 поверхности бочки 2,5-3,0 кг/ч; увеличение газоподачи из баллона до 10 кг/ч достигается путем обогрева водой с температурой выше 30-40° С; еще больший съем хлора - 40 кг/ч - получают в специальных испарителях .[ ...]

Кинетическое испарение является лимитирующим при оценке суммарной скорости испарения, когда его скорость обусловлена только скоростью «отрыва» молекул от поверхности (например, при испарении в вакуум или при сильном обдуве мелких капель). Иначе, лимитирующим является диффузионное испарение (характерно для поршневых ДВС), скорость которого определяется особенностью процессов тепломассопереноса между поверхностью испарения и окружающей средой.[ ...]

Переход от периода испарения свободной влаги из полос)и клеток к периоду испарения связанной влаги, т. е. к периоду внутренней диффузии, не всегда можно заметить, особенно если куски высушиваемой древесины имеют разные размеры. В этом случае скорость испарения свободной влаги из крупных кусков, находящихся в центре вагонетки, начинает уменьшаться значительно ранее, еще до достижения первой критической точки. Уменьшение скорости сушки, при удалении свободной влаги из полости клеток, наблюдается при понижении содержания в древесине влаги от 30 до 23%. Таким образом, этот период можно назвать промежуточным или переходным. В начале его, когда значительная часть поверхности древесины еще остается влажной, основным условием, определяющим скорость сушки, является диффузия пара через газовую пленку; в конце этого периода, когда почти вся поверхность древесины становится сухой, скорость сушки определяется внутренней диффузей.[ ...]

Напротив, потери на испарение, игравшие решающую роль в умеренных и жарких поясах, отходят на второй план в полярных морях, где упругость насыщенного пара весьма мала, состояние воздуха близко к насыщению, а потому влажный дефицит не может достичь сколько-нибудь значительной величины. Ввиду малого значения этой составляющей мы не внесем заметных погрешностей в вычисление теплового баланса, если допустим, что скорость испарения с поверхности льда при прочих равных условиях приблизительно такова, как с поверхности воды.[ ...]

В связи с этим измерения скорости испарения на корабле стали производиться только после того, как были найдены невесовые способы определения количества испарившейся воды в приборах на палубе.[ ...]

Из-за наличия зависимости скорости испарения от толщины прогреваемого слоя воды возможно генерирование тепловой неустойчивости. Действительно, пусть площадь зеркала испарения очень слабо зависит от глубины водоема. Тогда малое падение уровня, увеличив амплитуду температурных колебаний, вызовет рост испарения, который будет способствовать еще большему падению уровня и увеличению температурных колебаний и т.д. Таким образом, тепловые процессы в море создают механизм положительной обратной связи, конкурирующий с механизмом отрицательной обратной связи (изменением площади зеркала испарения). Вследствие их взаимодействия возникает новый физический механизм поведения уровня моря. Отметим, что на рост амплитуды колебаний температуры воды при уменьшении размеров моря указывали такие известные исследователи теплофизики Арала и Каспия, как B.C. Самойленко, Е.Г. Архипова, М.С. Потайчук [Каспийское море, 1986].[ ...]

Обычно во время наблюдений скорость ветра непрерывно меняется и точки кривой Ф - яр (/) не могут быть приведены к одной какой-нибудь скорости ветра, так как зависимость между нею и скоростью испарения только лишь подлежит определению. Чтобы обойти такое серьезное, на первый взгляд, затруднение, достаточно при построении кривых охлаждения брать в каче стве независимой переменной не время, а путь Ь, пролетаемый за время опыта частицами воздуха, обтекающего испаритель. Отсчитывать его можно непосредственно по анемометру.[ ...]

[ ...]

Среди показателей, определяющих скорость испарения, основным является давление насыщенных паров, которое зависит от температуры и соотношения паровоздушной и жидкостной фаз нефтепродуктов. С увеличением доли легких фракций повышается давление насыщенных паров нефтепродуктов и растут потери от испарения. В связи с возросшими требованиями к чистоте воздушного бассейна точность определения потерь от испарения приобретает важное значение.[ ...]

Если пролитый продукт имеет достаточно высокую скорость испарения, можно удержать его на изолированном участке и дать ему безвредно испариться. Если пролитый продукт является огнеопасным, его нельзя выпаривать или диспергировать, разбавляя водой, его можно удержать нанесением на поверхность пленкообразующей пены. Пена уменьшает испарение продукта до минимума, поэтому сами жидкости должны быть удалены механическим способом.[ ...]

Для оценки возможности пакетной передачи заряда при испарении воды было исследовано оценка влияние давления на процесс разделения электрического заряда (давление в данном случае выступает в качестве фактора усиления скорости испарения жидкости).[ ...]

В зависимости от вида растворителя, концентрации раствора и скорости испарения величина и форма кристаллов 4,4 -ДДТ могут несколько изменяться.[ ...]

Этот вывод Стефана совсем неосновательно переносится иногда на случай испарения, происходящего под действием ветра, чем и объясняется ошибочное мнение, укоренившееся у некоторых метеорологов,- будто размеры испарителя влияют на результаты наблюдения скорости испарения с единицы поверхности.[ ...]

Так как коэффициент диффузии В весьма мал, то весьма малой оказывается и скорость испарения Е, управляемого диффузией. Она практически равна нулю по сравнению со скоростью испарения при самом слабом ветре.[ ...]

В двигателях с непосредственным впрыском бензина время, отводимое на процесс испарения, значительно меньше. Оно определяется моментом от начала впрыска до воспламенения и составляет 0,02-0,03 с. В такте впуска факел распыленного бензина омывается потоком поступающего воздуха. Значительная скорость вихревого движения воздуха, повышенная температура остаточных газов и низкое давление в камере сгорания являются благоприятными факторами, обеспечивающими высокую скорость испарения бензина, перемешивания его паров с воздухом. Экспериментально установлено, что в такте впуска испаряется около 80% бензина.[ ...]

Наиболее высокие концентрации 50 и 5 80, по-видимому, обусловлены прежде всего повышенной скоростью испарения снега, которая может происходить над подземными коммуникациями, выделяющими тепло, вблизи проезжей части улиц или на открытых площадках, где солнечная инсоляция проявляется сильнее. Так, самые высокие концентрации 50 и 5180 установлены в сквере у Павелецкого вокзала вблизи перехода между станциями метрополитена.[ ...]

В качестве источника тяжелого газа в основной серии экспериментов рассматривалось стационарное испарение паров жидкого азота с поверхности их разлива. Скорость испарения принималась равной 0,05 м/с, поверхность испарения 31,5 мг, температура паров азота в источнике принималась равновесной 77 К.[ ...]

Испаряемость нефтепродуктов - их способность переходить из жидкой фазы (масляной фракции) в паровую; скорость испарения зависит от состава, площади испарения, типа емкости, в которой они находятся, скорости движения воздуха, давления насыщенных паров нефти или нефтепродукта. Давление насыщенных паров наиболее распространенных нефтепродуктов составляет у автобензинов - до 700, у авиабензинов - до 360, керосина тракторного - до 10 мм рт. ст.[ ...]

В этом процессе основное внимание уделялось управлению ростом кристаллов льда. При тщательном контроле скорости испарения бутана удалось создать условия, при которых в переохлажденном рассоле предотвращалось образование большого числа центров кристаллизации.[ ...]

Используя приведенные выше соотношения и зависимость (тв) , можно получить приближенное значение массовой скорости испарения тд с внешней поверхности газоконденсата в зависимости от скорости движения и температуры воздушной среды, величины лучистых потоков д£ , д и начальной температуры газоконденсата Т0.[ ...]

Передвижение воды и питательных веществ вверх по ксилеме у высших растений частично связано с транспирацией, т. е. испарением влаги листьями через многочисленные устьица. По мере потери воды клетками недостаток диффузионного давления притягивает воду из элементов ксилемы, которые образуют крупные многочисленные сплошные трубки (сосуды) от корней до листьев. Таким образом, натяжение передается через весь столб к клеткам корня и приводит к усилению поглощения воды. Скорость транспирации зависит от степени раскрытия устьиц и от таких окружающих факторов, как температура и влажность воздуха, которые влияют на физическую скорость испарения воды. Замыкание и размыкание устьиц является механическим процессом, регулируемым тургором замыкающих клеток (см. рис. 27).[ ...]

Заугольников С. Д., Кочанов М. М., Лойт А. О., Ставчинский И. И. Новые расчетные методы определения давления насыщенных паров и скорости испарения вредных веществ в гигиенических исследованиях. - Гиг. труда, 1976, № 2, с. 27.[ ...]

Как следует из приведенных данных, потери при наливе открытой струей в два раза выше потерь при нижнем наливе и наливе под уровень продукта. Скорость испарения нефтепродуктов при наливе зависит от ряда факторов, включающих давление насыщенных паров жидкого продукта, количества и концентрации паров в цистерне до налива, метода налива.[ ...]

Подчеркнем, что нелинейные зависимости теплофизических свойств суши от ее влажности - наиболее существенные факторы теплопередачи в почве. Поэтому скорость испарения, пропорциональная разности Е-Ех (Е - упругость насыщения на некоторой высоте над поверхностью суши), оказывается зависящей от влагозапасов суши причем с ростом ¥ уменьшаются А и, соответственно, Е. Таким образом, возникает механизм положительной обратной связи: уменьшение испарения ведет к увеличению влагозапасов, что уменьшает амплитуду температурных колебаний и испарение и т.д.[ ...]

Суточный ход относительной влажности зависит от упругости пара и упругости насыщения. С повышением температуры испаряющей поверхности увеличивается скорость испарения и, следовательно, увеличивается е. Но Е растет значительно быстрее, чем е, поэтому с повышением температуры поверхности, а с ней и температуры воздуха относительная влажность уменьшается [см. формулу (5.1)]. Дневное ее понижение особенно резко выражено над континентами в летнее время, когда в результате турбулентной диффузии пара вверх е у поверхности уменьшается, а вследствие роста температуры воздуха Е увеличивается. Поэтому амплитуда суточных колебаний относительной влажности на материках значительно больше, чем над водными поверхностями.[ ...]

Несмотря на то, что ХОП имеют низкое давление насыщенных паров, они испаряются с поверхности почвы и воды в воздух. При концентрации ДДГ в почве 10 мкг/г и температуре 30 °С средняя скорость испарения составляет 6,3 106 - 9 10 5 мг/(см2 ч).

Хотя летучесть диоксинов сравнительно незначительна, они могут переноситься воздушными массами в виде аэрозольных частиц в “сверхвысоких” концентрациях 87] Более интенсивно испаряются с поверхности воды ПХБ. Значения скорости испарения при 100 °С колеблются в пределах 0,05-0,9 мгУ(см2 ч).[ ...]

Общий поток энергии, характеризующий экосистему, состоит из солнечного излучения и длинноволнового теплового излучения, получаемого от близлежащих тел. Оба вида излучения определяют климатические условия среды (температуру, скорость испарения воды, движения воздуха и т. д.), но в фотосинтезе, обеспечивающем энергией живые компоненты экосистемы, используется лишь малая часть энергии солнечного излучения. За счет этой энергии создается основная, или первичная, продукция экосистемы. Следовательно, первичная продуктивность экосистемы определяется как скорость, с которой лучистая энергия используется продуцентами в процессе фотосинтеза, накапливаясь в форме химических связей органических веществ. Первичную продуктивность Р выражают в единицах массы, энергии или эквивалентных единицах в единицу времени.[ ...]

Первый период сушки начинается тогда, когда образовавшийся из влаги пар проникает через всю толщу бумажного полотна и уходит наружу. Этот период (участок ВС) характеризуется удалением свободной влаги из бумажного полотна. Он идет с постоянной скоростью испарения со всей поверхности бумажного полотна при практически постоянной температуре, равной температуре испарения воды при данных барометрических условиях (/м не более 100°С), независимо от температуры поверхности сушильных цилиндров. Продолжительность первого периода сушки длится 50-65 % от общей продолжительности сушки бумаги.[ ...]

Важнейшей характеристикой климата Земли является среднегодовая температура приземного слоя атмосферы, складывающаяся как следствие энергетического баланса Земли. Температура земной поверхности при заданном, потоке солнечного излучения определяется скоростью испарения воды с поверхности Земли, концентрациями атмосферных газов, в основном парами воды и диоксида углерода, создающих парниковый эффект, и величиной альбедо-коэффициентом отражения солнечного излучения атмосферой и земной поверхностью.[ ...]

Внутригодовой ход температуры поверхности моря можно представить в виде суммы среднегодовой температуры поверхности и отклонения от этой величины, которое характеризуется амплитудой. Ввиду нелинейной зависимости влагосодержания от температуры среднегодовая величина слоя испарения оказывается не только функцией среднегодовой температуры поверхности, но и амплитуды температурных колебаний. Расчеты показали, что скорость испарения - сильно возрастающая нелинейная функция этой амплитуды.[ ...]

Смеси сероуглерода с четыреххлористым углеродом значительно более безопасны в пожарном отношении, чем чистый сероуглерод. Применяют их для борьбы с вредителями запасов изредка и притом в небольших количествах, в порядке производственных опытов. Причиной этого является неодинаковая скорость испарения компонентов смеси в воздухе, вследствие чего в отдельных местах могут создаваться огнеопасные концентрации паров сероуглерода. Поэтому даже при газации смесями необходимо принимать те же меры предосторожности от пожара или взрыва, как и при пользовании чистым сероуглеродом. Кроме того, при применении смеси стоимость обработки намного возрастает, и приходится работать со значительно большими количествами фумиганта, что усложняет и удорожает газовое обеззараживание.[ ...]

Суспензии указанных концентраций действуют токсически на яйца клещей и вызывают гибель некоторой части взрослых личинок и половозрелых клещей, а также гибель всех молодых личинок.[ ...]

Величина зазора между поршнем и цилиндром, поршнем и поршневыми кольцами зависит от температуры деталей. Температура, в свою очередь, зависит от частоты вращения, нагрузки, температуры масла и охлаждающей жидкости и других факторов. Частота вращения коленчатого вала, величина зазоров в его подшипниках и давление масла в главной магистрали влияют на количество масла, разбрызгиваемого на стенки цилиндра при вращении вала. Средняя температура масляной пленки влияет на вязкость и скорость испарения масла, находящегося в пленке, и ее толщину. Это лишь главные параметры режима работы двигателя, оказывающие влияние на угар масла.[ ...]

Основными минералами являются кварц, более или менее измененные полевые шпаты и слюды, и песчаники - от кварцитовых до лититовых аренитов, вследствие их низкой до умеренной химической зрелости. Наиболее общие цементы - кремнистый или известковый. В твердом стоке русел может встречаться глинистая галька, которая поступает в результате оползней намывных валов. Глауконит отсутствует. Торф и уголь присутствуют в виде пластов (на пойме) и мелких обломков (в руслах). Карбонатные и железистые конкреции могут формироваться на участках с высокой скоростью испарения (на пойме). Глины в основном каолинитовые, но могут присутствовать и другие их типы, в зависимости от климатических условий и расстояния от источника сноса. В процессе диагенеза, флюиды, циркулирующие в разрезе, могут вступать в реакцию с обломочными нестабильными минералами, результатом чего является глинистая цементация. Кальцитовый цемент также может осаждаться.

Солнечная энергия приводит в действие невероятно сильную тепловую машину, которая, преодолевая гравитацию, без труда поднимает в воздух огромных размеров куб (каждая сторона составляет около восьмидесяти километров). Таким образом, с поверхности нашей планеты за год испаряется водяной слой метр толщиной.

Во время испарения жидкое вещество постепенно переходит в паро- или газообразное состояние после того, как мельчайшие частицы (молекулы или атомы), двигаясь на скорости, достаточной для того, чтобы преодолеть силы сцепления между частицами, отрываются от поверхности.

Несмотря на то, что процесс испарения известен больше как переход жидкого вещества в пар, существует сухое испарение, когда при минусовой температуре лёд переходит из твёрдого состояния в парообразное, минуя жидкую фазу. Например, если выстиранное сырое бельё развесить сушиться на морозе, оно, замерзнув, становится очень жёстким, но через какое-то время, размягчившись, становится сухим.

Как улетучивается жидкость

Молекулы жидкости расположены друг к другу практически впритык, и, несмотря на то, что связаны между собой силами притяжения, к определённым точкам не привязаны, а потому свободно перемещаются по всей площади вещества (они постоянно сталкиваются друг с другом и изменяют свою скорость).

Частицы, что уходят на поверхность, набирают во время движения темп, достаточный для того, чтобы покинуть вещество. Оказавшись наверху, своё движение они не останавливают и, преодолев притяжение нижних частиц, вылетают из воды, преобразовываясь в пар. При этом часть молекул из-за хаотического движения возвращается в жидкость, остальные уходят дальше, в атмосферу.

Испарение на этом не заканчивается, и на поверхность вырываются следующие молекулы (так происходит до тех пор, пока жидкость полностью не улетучивается).

Если речь идёт, например, о круговороте воды в природе, можно наблюдать за процессом конденсации, когда пар, сконцентрировавшись, при определённых условиях возвращается назад. Таким образом, испарение и конденсация в природе тесно связаны между собой, поскольку благодаря им осуществляется постоянный водообмен между землёй, сушей и атмосферой, благодаря чему окружающая среда снабжается огромным количеством полезных веществ.

Стоит заметить, что интенсивность испарения у каждого вещества различна, а потому основными физическими характеристиками, которые влияют на скорость испарения, являются:

  1. Плотность. Чем вещество плотнее, тем ближе молекулы находятся по отношению друг к другу, тем труднее верхним частицам преодолеть силу притяжения других атомов, следовательно, испарение жидкости происходит медленнее. Например, метиловый спирт улетучивается намного быстрее воды (метиловый спирт – 0,79 г/см3, вода – 0,99 г/см3).
  2. Температура. На скорость испарения также влияет теплота испарения. Несмотря на то, что процесс испарения происходит даже при минусовой температуре, чем больше температура вещества, тем выше теплота испарения, значит, тем быстрее двигаются частицы, которые, увеличивая интенсивность испарения, массово покидают жидкость (поэтому кипящая вода испаряется быстрее холодной).Из-за потери быстрых молекул внутренняя энергия жидкости уменьшается, а потому температура вещества во время испарения понижается. Если жидкость в это время будет находиться возле источника тепла или непосредственно нагреваться, её температура снижаться не будет, так же, как и не снизится интенсивность испарения.
  3. Площадь поверхности. Чем большую площадь поверхности занимает жидкость, тем больше молекул с неё улетучивается, тем выше скорость испарения. Например, если влить воду в кувшин с узким горлышком, жидкость будет исчезать очень медленно, поскольку испаряемые частицы начнут оседать на сужающихся стенках и спускаться. В то же время, если налить воду в миску, молекулы будут беспрепятственно уходить с поверхности жидкости, поскольку им будет не на чем конденсироваться, дабы вернуться в воду.
  4. Ветер. Процесс испарения окажется намного быстрее, если над ёмкостью, в которой находится вода, движется воздух. Чем быстрее он это делает, тем скорость испарения больше. Нельзя не учитывать взаимодействие ветра с испарением и конденсацией.Молекулы воды, поднимаясь с океанической поверхности, частично возвращаются назад, но большая часть высоко в небе конденсируется и образует облака, которые ветер перегоняет на сушу, где капли выпадают в виде дождя и, проникнув в грунт, через какое-то время возвращаются в океан, снабжая растущую в почве растительность влагой и растворёнными минеральными веществами.

Роль в жизни растений

Значение испарения в жизни растительности трудно переоценить, особенно учитывая, что живое растение на восемьдесят процентов состоит из воды. Поэтому если растению не хватает влаги, оно может погибнуть, так как вместе с водой в него не будут поступать также нужные для жизнедеятельности питательные вещества и микроэлементы.

Вода, передвигаясь по растительному организму, переносит и образует внутри него органические вещества, для образования которых растение нуждается в солнечном свете.

А вот тут немаловажная роль отводится испарению, так как солнечные лучи имеют способность чрезвычайно сильно нагревать предметы, а потому способны вызвать гибель растения от перегрева (особенно в жаркие летние дни). Чтобы этого избежать, происходит испарение воды листьями, через которые в это время выделяется много жидкости (например, из кукурузы за сутки испаряется от одного до четырёх стаканов воды).


Это значит, что чем больше в организм растения поступит воды, тем испарение воды листьями будет интенсивнее, растение будет больше охлаждаться и нормально расти. Испарение воды растениями можно ощутить, если во время прогулки в знойный день прикоснуться к зелёным листьям: они обязательно окажутся прохладными.

Связь с человеком

Не менее велика роль испарения в жизнедеятельности человеческого организма: он борется с нагреванием посредством потоотделения. Испарение происходит обычно через кожу, а также через дыхательные пути. Это можно легко заметить во время болезни, когда температура тела поднимается или в период занятий спортом, когда повышается интенсивность испарения.

Если нагрузка невелика, из организма уходит от одного до двух литров жидкости в час, при более интенсивном занятии спортом, особенно когда температура внешней среды превышает 25 градусов, интенсивность испарения увеличивается и с потом может выйти от трёх до шести литров жидкости.

Через кожу и дыхательные пути вода не только покидает организм, но и поступает в него вместе с испарениями окружающей среды (не зря своим пациентам врачи часто прописывают отдых на море). К сожалению, вместе с полезными элементами в него нередко попадают и вредные частицы, среди них – химические вещества, вредные испарения, которые наносят здоровью непоправимый ущерб.

Одни из них токсичны, другие, вызывают аллергию, третьи – канцерогенны, четвёртые вызывают онкологические и другие не менее опасные заболевания, при этом многие обладают сразу несколькими вредными свойствами. Вредные испарения оказываются в организме в основном через органы дыхания и кожу, после чего, оказавшись внутри, моментально всасываются в кровь и разносятся по всему телу, оказывая токсическое воздействие и вызывая серьёзные заболевания.

В данном случае много зависит от местности, где обитает человек (возле фабрики или завода), помещения, в котором живёт или работает, а также времени пребывания в опасных для здоровья условиях.

Вредные испарения могут попадать в организм из предметов быта, например, линолеума, мебели, окон и пр. Дабы сохранить жизнь и здоровье, таких ситуаций желательно избегать и наилучшим выходом будет покинуть опасную территорию, вплоть до обмена квартиры или работы, а при обустройстве жилища обращайте внимание на сертификаты качества покупаемых материалов.

VI районная научно-практическая конференция

школьников Яшкинского района «Открытия юных исследователей»

Секция: технология

Факторы, влияющие на скорость испарения жидкости.

ученица 5 класс

МБОУ «СОШ №2Яшкинского

муниципального района»

05.02.2004г. рождения

адрес:652010, пгт. Яшкино, ул. Пограничная,18

научный руководитель:

Локк Наталья Викторовна,

учитель технологии

МБОУ «СОШ №2Яшкинского

муниципального района»

адрес: 652010, пгт. Яшкино, ул.Мирная,12

Яшкинский район 2015

Оглавление

Введение …………………………………………………………………… 3

Глава I . Испарение ……………………………………………………..… ... 3

    1. Что такое испарение?...……………………………………………….. 3

      Механизм процесса испарения ………………………………………..3

      Факторы, влияющие на скорость испарения жидкости….…………..4

1.4Роль испарения в природе и в жизни человека ……………..………..4

Глава II . Результаты проведенного исследования ………………....… 5

2.1 Анализ анкетирования………………………………….. ……………..5

2.2 Результаты проведенных опытов ……………………………………..6

Глава III .Заключение ……………………………………………………...10

Литература ………………………………………………………………….12

Введение

Процесс испарения – это очень интересное физико-химическое явление, его интересно наблюдать и оно часто встречается в нашей жизни.Все знают, что если развесить выстиранное белье, то оно высохнет. И так же очевидно, что мокрый тротуар после дождя обязательно станет сухим. Мы часто сушим волосы феном и при этом они высыхают намного быстрее, чем без применения фена, кипение жидкости когда мы варим суп? В связи с этим возникают вопросы. Как именно и почему это происходит? От каких факторов зависит?

Цель исследования: исследовать зависимость скорости испарения воды от различных факторов среды.

Для достижения цели поставили следующие задачи:

    изучить литературу по данному вопросу, материалы Интернет-сайтов;

    установить опытным путем, какие факторы влияют на скорость испарения;

    выяснить, какова роль испарения в природе и в жизни человека;

    исследовать и проанализировать, что знают об испарении ученики нашего класса;

Объект исследования: испарение жидкости (воды)

Предмет исследования: факторы, влияющие на скорость испарения жидкости.

Гипотеза: скорость испарения зависит от рода вещества, площади поверхности жидкости и температуры воздуха, объема жидкости, наличие перемещающихся воздушных потоков над ее поверхностью.

Методы исследования :

    Поиск необходимой информации в литературных источниках и сети Интернет.

    Анализ и обработка информации.

    Анкетирование, анализ и обобщение результатов анкетирования.

    Опыты.

Глава I . Испарение

1.1 Что такое испарение?

Испарение – это процесс перехода вещества из жидкого состояния в газообразное. Обычно под испарением понимают переход жидкости в пар, происходящий со свободной поверхности жидкости. Испарение происходит с поверхности воды, почвы, растительности, льда, снега и т.д. за счет энергии, получаемой Землей от Солнца.

1.2Механизмпроцесса испарения

Процесс испарения состоит в том, что вода из жидкого или твердого состояния превращается в пар. Молекулы воды, находясь в непрерывном движении, преодолевают силу взаимного молекулярного притяжения и вылетают в воздух, находящийся над поверхностью воды.

Вылетевшие с поверхности воды молекулы образуют над ней пар. У оставшихся молекул воды при соударениях изменяются скорости, некоторые из молекул приобретают при этом скорость, достаточную для того, чтобы, оказавшись у поверхности, вылететь из жидкости. Этот процесс продолжается непрерывно, поэтому вода испаряется непрерывно. Таков механизм испарения.

1.3 Факторы, влияющие на скорость испарения жидкости

Существует несколько факторов, влияющих на скорость испарения жидкости.

1.Какая из луж, образовавшихся после дождя, высохнет быстрее: большая или маленькая? Скорость испарения жидкости зависит от объёма, поэтому меньшая лужа высохнет быстрее.

2. Где вода испарится быстрее: в круглой тарелке или в высоком кувшине? Скорость испарения жидкости зависит от площади ее поверхности: чем больше площадь поверхности, тем больше будет количество частиц, покидающих жидкость, и испарение будет происходить быстрее.

3.В какой день вода луж, прудов, озер, рек, морей, влага, содержащаяся в растениях, испаряется быстрее: солнечный или пасмурный? С увеличением температуры испарение происходит быстрее – в теплой жидкости скорость движения молекул больше, больше молекул имеет шанс покинуть жидкость и перейти в состояние, которое мы называем «газ».

4.Зачем жители полярных стран смазывают жиром лицо в сильный мороз? Скорость испарения зависит от рода жидкости, жир испаряется медленно, поэтому кожа лица не переохлаждается

5.Вы пьете чай, он очень горячий. Что вы сделаете, чтобы он остыл быстрее? Белье высыхает быстрее в какую погоду – в ветреную или тихую? Если воздух над жидкостью движется, то он сдувает, уносит молекулы, которые перешли из жидкости в газ, и вместе с тем освобождает пространство для следующих молекул. В этом случае процесс испарения ускоряется.

Таким образом, проанализировав литературу по теме, мы узнали, что скорость испарения зависит от ряда факторов.

1.4 Роль испарения в природе и в жизни человека

Главную роль в круговороте воды в природе играет испарение.Это непрерывный процесс. Испарение происходит с поверхности океана, суши и ее водоемов.

Испарение играет огромную роль в растительном, животном мире и в жизни человека. Оно предохраняет человека, животных и растения от перегрева.

Ни одно растение не может жить без воды. Она составляет от 70 до 95% сырой массы тела растения. Все процессы жизнедеятельности организма протекают с использованием воды: прорастание семян, рост и развитие взрослого растения, фотосинтез, образование плодов и семян. Важно, что при испарении поддерживается непрерывный ток воды по растению снизу вверх. Клетки листа, отдавшие воду, начинают активно её поглощать из сосудов жилок. Вместе с водой к клеткам поступают растворённые вещества. Следовательно, питание клетки прямо связано с испарением. При испарении организм растения охлаждается. Если процесс испарения нарушен, растение в потоках яркого солнечного света может пострадать от ожогов.

У растений засушливых мест, где воды в почве очень мало, а воздух горячий и сухой, имеются разнообразные приспособления, позволяющие уменьшить потерю влаги. У кактусов вместо листьев колючки; так как их поверхность небольшая, то испарение замедлено. У алоэ листья узкие, покрытые восковым налетом, предохраняющим от интенсивного испарения.

Для уравновешивания неизбежной потери воды за счет испарения многие животные всасывают ее через покровы тела в жидком или газообразном состоянии (амфибии, насекомые, клещи). В теплорегуляции птиц большую роль играют воздушные мешки. В жаркое время с поверхности воздушных мешков испаряется влага, что способствует охлаждению организма. В связи с этим в жаркую погоду птицы открывают клюв.

Организм человека, с помощью испарения охлаждается. Для терморегуляции организма важную роль играет потоотделение. Оно обеспечивает постоянство температуры тела человека или животного. За счет испарения пота уменьшается внутренняя энергия, благодаря этому организм охлаждается.

На производстве испарение применяется для сушки деталей. В технике испарение применяется как средство для очистки веществ или разделения жидких смесей перегонкой (получение бензина, керосина). Процесс испарения также лежит в основе двигателей внутреннего сгорания, холодильных установок, а также в основе всех процессов сушки в сушильных камерах.

Глава II . Результаты проведенного исследования

2.1 Анализ анкет

Чтобы выяснить, знают ли одноклассники что-нибудь о процессе испарения, я провела анкетирование среди ребят (Приложение 1, 2). В анкетировании приняло участие 20 одноклассников. В результате анкетирования выяснили:

    Знают, что такое процесс испарения - 80% (16уч-ся).

    Чаще всего наблюдали процесс испарения:

    на кухне, когда кипит чайник - 85 % (17уч-ся);

    над рекой - 15 % (3уч-ся);на улице после дождя -25% (5уч-ся);

    Считают, что процесс испарения влияет на жизнь человека -85% (17уч-ся);

2.2Результаты проведенных опытов.

Для исследования зависимости скорости испарения от различных факторов был проведен ряд опытов.

Опыт №1.

Проверка зависимости скорости испарения жидкости от её объема.

Оборудование: два одинаковых стакана, вода, мензурка.

Возьмем два одинаковых стакана и нальем в них воду в разных объемах. Поместим стаканы в одинаковые условия и будем наблюдать

Вывод: скорость испарения зависит от объёма жидкости (массы). При одинаковой температуре воды и внешних условиях в обоих стаканах вода испарилась с одинаковой скоростью. В том стакане, где объём воды был меньше, она испарилась раньше, чем в том, где объём был больше;

Опыт №2.

Проверка зависимости скорости испарения жидкости от величины её поверхности.

Оборудование: стакан, тарелка, вода, мензурка.

Для проведения опыта возьмём стакан и тарелку. Нальём в них воду одинаковой массы и температуры. Поместим в среду с одинаковыми условиями. Будем наблюдать.

Вывод : по результатам опыта видно, что скорость испарения зависит от величины её поверхности. Если в узкий и широкий сосуд налить одинаковый объём воды, то можно увидеть, что в широком сосуде вода испаряется быстрее. Следовательно, чем больше площадь поверхности, тем большее число молекул вылетает в воздух. Значит, скорость испарения зависит от площади поверхности жидкости.

Опыт № 3.

Проверка зависимости скорости испарения жидкости от температуры.

Оборудование: 2 одинаковых стакана, вода, мензурка.

Возьмем 2 одинаковых стакана и нальем в них воду одинаковой массы и температуры. Поставим 1 стакан с водой в теплое место, а другой в более прохладное место и будем наблюдать до тех пор, пока вода в одном из стаканов не испарится.

Стакан №1(мл)

Теплое место

Стакан №2 (мл)

Прохладное место

01.02.2015

17.00-17.10

02.02.2015

17.00-17.10

03.02.2015

17.00-17.10

04.02.2015

17.00-17.10

05.02.2015

17.00-17.10

06.02.2015

17.00-17.10

07.02.2015

17.00-17.10

08.02.2015

17.00-17.10

09.02.2015

17.10-17.10

10.02.2015

17.00-17.10

11.02.2015

17.00-17.10


Вывод: в результате проделанного опыта я выяснила, что вода испаряется быстрее в том сосуде, который находится в месте с более высокой температурой, потому что при нагревании скорость движения молекул увеличивается, молекулы сталкиваются и выбрасываются в воздух.

Опыт №4.

Проверка зависимости скорости испарения жидкости от рода жидкости.

Оборудование: три одинаковые тарелки, три салфетки, спирт, масло, вода, три пипетки.

В тарелки положила салфетки и на них капнула поочерёдно одинаковое количество воды, спирта и масла. Поставила в тёплом помещении и заметила, что спирт испарился через 3 минут, вода –через 12 минут и масло – через 2часа, остался след.

На 1 листе - вода

на 2 листе – масло

на 3 листе – спирт

Вывод: в результате проделанного опыта я выяснила, что разные жидкости испаряются по-разному, значит, скорость испарения жидкости зависит от рода жидкости.

Опыт №5.

Проверка зависимости скорости испарения жидкости от ветра.

Оборудование: две одинаковые салфетки, вода, фен.

Намочим две одинаковые салфетки водой. Одну оставим высыхать на воздухе, а на другую направим горячую струю воздуха с помощью фена. Через 3 минуты эта салфетка стала сухой, другая же оставалась влажной ещё14 минут.

Вывод: если воздух над жидкостью движется, скорость испарения увеличивается, так как поток воздуха помогает молекулам жидкости оторваться от поверхности и перейти в парообразное состояние. Горячий воздух ускорит этот процесс.

III . Заключение

В представленной работе я более подробно узнала, что такое испарение, как оно происходит, что скорость испарения жидкостей зависит от разных факторов:

1. Скорость испарения зависит от объёма жидкости (массы). При одинаковой температуре воды и внешних условиях в обоих стаканах вода испарилась с одинаковой скоростью. В том стакане, где объём воды был меньше, она испарилась раньше, чем в том, где объём был больше;

2. Скорость испарения зависит от величины её поверхности. Если в узкий и широкий сосуд налить по одинаковому объему воды, то можно увидеть, что в широком сосуде вода испаряется быстрее. Это объясняется тем, что жидкость испаряется с поверхности, и чем больше площадь поверхности, тем большее число молекул вылетает в воздух. Значит, скорость испарения зависит от площади поверхности жидкости;

3. Вода испаряется быстрее в том сосуде, который находится в месте с более высокой температурой, потому что при нагревании скорость движения молекул увеличивается, молекулы сталкиваются и выбрасываются в воздух;

4. Разные жидкости испаряются по-разному, значит, скорость испарения жидкости зависит от рода жидкости;

5. Если воздух над жидкостью движется, скорость испарения увеличивается, так как поток воздуха помогает молекулам жидкости оторваться от поверхности и перейти в парообразное состояние. Горячий воздух ускоряет этот процесс.

Моя гипотеза о зависимости скорости испарения жидкости от разных факторов подтвердилась.

Данная работа актуальна, так как люди активно используют процесс испарения в своей жизни, применяют его в производстве различных механизмов и машин, используют в быту. В природе этот процесс происходит вне зависимости от деятельности человека и задача людей – не нарушать этот процесс. Для этого необходимо любить природу и любить нашу Землю!

Литература

    Горев Л.А. Занимательные опыты и викторины по физике [Текст] /Л.А. Горев.- М.: ЭКСМО,2009

    Исаева О.Г. Я познаю мир [Текст] / О.Г. Исаева.- АСТ, Астрель, 2004

    МейяниА. Большая книга экспериментов для школьников [Текст] / А. Мейяни. - М.: ЗАО «РОСМЭН-ПРЕСС», 2006.

    Испарение [Электронный ресурс]:Викепидия.– Режим доступа: .- 10.12.2013

    Парообразование [Электронный ресурс]: Классная физика для любознательных.– Режим доступа: . – 15.12.2013

Разбираясь с вопросом, от чего зависит скорость испарения жидкости, нужно рассматривать закономерности влагообмена, встречающиеся в повседневной жизни. Так, теплообмен напрямую влияет на улетучивание молекул любого раствора. Частицы легче отрываются от поверхности при достаточном запасе кинетической энергии. Последняя сообщается в процессе, когда мы пытаемся остудить чашку кофе или чая, обдувая поверхность стакана.

Физические процессы

Рассмотрим, от чего зависит скорость испарения жидкости при различных условиях. Влияние оказывают свет от солнца, ветер, состав раствора, температура. Сам физический процесс испарения можно представить как хаотичное движение невесомых шариков. Каждый из них обладает определенным запасом кинетической энергии. Получать последнюю они могут извне или от соседствующих молекул.

В результате выхода молекул из раствора получается газообразное вещество. Отсюда следует первое, от чего зависит скорость испарения жидкости — от плотности мельчайших частичек над поверхностью любого жидкого вещества. Но на весь процесс влияет и плотность самого раствора. Молекулам легче оторваться в очищенном от солей дистилляте, чем преодолевать давление тяжелых частиц.

Процесс испарения наблюдают из любого вещества: твердого, жидкого. Разрежение в воздухе облегчает выход частиц с поверхности, повышенная влажность тормозит их движение. Подогрев раствора на огне повышает обмен кинетической энергии между молекулами, помогая разрушать установившиеся связи.

От чего зависит скорость испарения жидкости? От площади поверхности, с которой будут вылетать молекулы. Так, с разлитой лужи вода исчезнет быстрее, чем из бутылки с узким горлышком. Ветер поможет высвободить наиболее кинетически заряженные частички.

Опыт № 1. Площадь

Скорость испарения жидкости зависит от площади поверхности сосуда, в котором она находится. Доказательством этому служит опыт, в котором подбирают несколько видов емкостей, различающихся по форме горлышка. Везде наливают одинаковое количество однородного раствора.

Горлышки открытые. Засекают время и по его истечении производят замер оставшегося объема жидкости в каждом сосуде. Составляется таблица, и по результатам несложно заметить, что наименьшее количество будет в самой широкой емкости. Однако учитывается еще много факторов: температура, движение и плотность воздуха в помещении.

Еще один простой опыт позволяет проверить, как зависит скорость испарения жидкости от площади. Нужно просто вылить воду из сосуда на пол и засечь время. Соответственно, можно увидеть, что разлитый объем практически моментально исчезнет, в отличие от жидкости в сосуде.

Опыт № 2. Источник движения воздуха

Скорость испарения увеличивается, если напротив поверхности установить источник движения воздуха. Помочь в этом может вентилятор или другой аналогичный прибор. Время сократится при использовании нагревательных элементов.

Фен способен испарить значительный объем за минуты, тогда как под воздействием вентилятора вода аналогичного объема будет исчезать целые сутки. Не только колебания воздуха влияют на выход молекул жидкости с поверхности, но и движение самого объема с жидкостью облегчает такой процесс.

Постоянное перемешивание жидкости в стакане помогает перераспределять энергию между частицами. Движение ускоряет процесс теплоотдачи от раствора воздушной среде, а это, соответственно, влияет на скорость испарения. Так, при помешивании горячего чая часть жидкости поднимается в виде пара.

Опыт № 3. Плотность среды

На скорость испарения влияет плотность среды — как самой жидкости, так и воздуха над ней. Проводят эксперимент: в одном сосуде будет вода с солью, во втором — отфильтрованная вода аналогичного объема. Через сутки соляной раствор изменит свой объем на незначительную часть по сравнению с количеством жидкости во втором сосуде.

В домах на морском побережье можно заметить, что постиранные вещи сохнут довольно долго. Это связано с повышенной влажностью воздуха. Соответственно, и испарение из сосуда в таком месте более длительное, чем вдалеке от моря, реки, озера.

ГОУ Гимназия № 000

«Московская городская педагогическая гимназия-лаборатория»

Реферат

Факторы, влияющие на скорость испарения воды

Жалеев Тимур

Руководитель:

Введение

Определение испарения. Цель работы. Актуальность работы Описание структуры работы.

Основная часть

Механизм испарения на молекулярном уровне. Факторы, влияющие на скорость испарения.

2.1 Влияние на скорость испарения температуры воды.

2.1.1 Неравномерность прогрева воды.

2.1.2 Конвекция. Ламинарный и турбулентный режим. Число Рэлея. Зависимость типа режима перемешивания жидкости со скоростью передачи энергии.

2.1.3 Температура воздуха и ее влияние на температуру воды. Числа Рэлея в воздухе и тип режима перемешивания воздуха.

2.2.1 Связь влажности воздуха у поверхности воды с влажностью воздуха «на бесконечности».

2.2.2 Связь влажности воздуха у поверхности воды со скоростью испарения.

2.2.3 Связь влажности воздуха у поверхности воды со скоростью оттока водяных паров от поверхности.

2.2.4 Связь влажности воздуха у поверхности с геометрией поверхности.

Заключение.

Список литературы.

Введение.

Испарение – процесс перехода вещества из жидкого состояния в газообразное, происходящий с поглощением тепла.

Цель данной работы: выявить факторы, влияющие на скорость испарения воды.

Актуальность:

1. При испарении расходуется большое количество теплоты, следовательно, этот процесс можно использовать для охлаждения.

2. Интенсивность испарения существенно влияет на влажность воздуха, которая является определяющей во многих процессах.

3. Изучение механизмов испарения позволит построить более правдоподобные модели распределения температуры и влажности, т. е. позволит более точно предсказывать различные климатические процессы. Для расчета таких моделей используются современные вычислительные системы, но для их правильной работы необходимо детальное понимание всех процессов, влияющих на формирование погоды.

В данной работе мы рассмотрим факторы, влияющие на скорость испарения воды и их взаимосвязь.

На испарение влияет много факторов, но наиболее значимые из них температура поверхности воды и влажность воздуха над поверхностью воды. На каждый из этих факторов влияет ряд других:

1. Температура воды. На нее влияет температура окружающего воздуха. Теплообмен от воздуха к воде и обратно осуществляется теплопередачей (непосредственной передачей тепла без перемешивания) и конвекцией. Конвекция в свою очередь может проходить в разных режимах: ламинарном и турбулентном. Ламинарный – это режим, при котором жидкость перемещается стационарными струями без перемешивания. Турбулентный – это режим, при котором жидкость беспорядочно перемешивается из-за большой разности температур.

2. Влажность воздуха над поверхностью воды. На нее влияет интенсивность испарения воды (чем больше пара вышло из воды, тем больше его в воздухе), площадь поверхности (чем больше площадь поверхности, тем больше пара выходит из воды), ветер или другие формы конвекции в воздухе (насколько быстро удаляются водяные пары от поверхности воды).

Основная часть.

Механизм испарения на молекулярном уровне.

Молекулы воды, которые имеют достаточную кинетическую энергию и находятся близко к поверхности, способны оторваться от остальных молекул воды, т. е. происходит испарение. Если быстрые молекулы находятся в толще воды, а не на поверхности, то, ударяясь о другие молекулы, совершают над ними работу и теряют свою энергию. Быстрые молекулы воды, которые оторвались от поверхности воды, уносят энергию с собой, поэтому внутренняя энергия воды понижается, и она охлаждается.

Некоторые молекулы водяного пара, двигаясь хаотически, возвращаются в жидкость. Этот процесс называется конденсацией. Скорость конденсации зависит от концентрации молекул водяного пара.

2. Факторы, влияющие на скорость испарения.

2.1. Влияние на скорость испарения температуры воды.

На скорость испарения влияют многие факторы, но главный из них – температура поверхности воды. Чем больше температура, тем больше средняя скорость молекул, и, следовательно, больше молекул с большими скоростями, которые способны вылететь с поверхности. Вода не имеет одинаковую температуру во всей толще, для изучения испарения важна температура именно на поверхности. В свою очередь на эту температуру влияет целый ряд факторов:

1. Температура в толще воды . Количество теплоты из толщи воды к поверхности может переноситься двумя способами: теплопередачей или конвекцией. Конвекция начинается тогда, когда жидкость имеет большую температуру на глубине, в этом случае расширяясь при большей температуре, она начинает подниматься вверх. В воде при испарении необходимое для конвекции распределение температур происходит из-за того, что на поверхности вода, испаряясь, становится холоднее.

2. Температура воздуха обычно больше, чем температура на поверхности воды, потому что на поверхности происходит испарение и вода охлаждается. Поэтому, как правило, происходит подвод тепла из воздуха к поверхности. В случае если температура воздуха меньше, то тепловой поток идет в обратную сторону, причем скорость теплоотвода зависит от конвекции воздуха над поверхностью воды.

3. Интенсивность испарения влияет на температуру воды на поверхности. Чем больше интенсивность испарения, тем больше энергии унесли молекулы, и тем меньше температура поверхности. Чем меньше температура, тем меньше энергии в воде, и тем меньше интенсивность испарения.

Мы видим, что все указанные факторы тесно взаимосвязаны между собой: если увеличивается скорость испарения, температура поверхности жидкости уменьшается, следовательно, увеличивается теплообмен между поверхностью и толщей воды, с другой стороны, увеличивается теплообмен между поверхностью воды и воздухом, а также конвекционный поток над водой.

Безусловно, полностью учесть все эти факторы может только компьютерная модель.

2.1.1 Неравномерность прогрева воды.

Рассмотрим более детально процесс передачи тепла в толще воды. Практически всегда в не идеализированных условиях температура в разных местах жидкости неодинакова: вода испаряется только сверху, следовательно, охлаждается только сверху. Нагрев воды также происходит обычно неравномерно. Например, солнечные лучи проникают в толщу воды и по-разному нагревают их в зависимости от прозрачности воды. Любой другой источник более высокой или низкой температуры также передает тепло неравномерно, например рука держащего сосуд человека.

Если температура воды сверху меньше, то начинает происходить конвекция: холодная вода тяжелее горячей, поэтому холодная вода опускается, а горячая – поднимается. Но так как жидкость не перемешивается полностью, а перемещается целыми объемами, температура распределяется неравномерно. В случае возникновения конвекции жидкость начинает двигаться целыми «кусками». Если в этом случае поместить термометр в некоторую точку жидкости, он покажет колебание температуры, которое и будет отражать это движение «кусков» горячей или холодной жидкости.

2.1.2. Конвекция. Ламинарный и турбулентный режим. Число Рэлея. Зависимость типа режима перемешивания жидкости со скоростью передачи энергии.

Как уже говорилось выше, конвекция – это явление, при котором теплообмен происходит путем перемешивания вещества. С ее помощью горячая вода перемещается из толщи к поверхности, а остывшая из-за испарения вода, в свою очередь, перемещается от поверхности ко дну.

Жидкость, при нагревании снизу или охлаждении сверху может перемешиваться в двух режимах: ламинарном и турбулентном.

Ламинарный поток - это поток, при котором жидкость перемещается стационарными струями без перемешивания и беспорядочных быстрых изменений скорости. В случае ламинарных потоков движение жидкости можно изобразить при помощи линий тока: воображаемых линий, вдоль которых перемещаются частицы воды.

Турбулентный поток – это поток, при котором из-за большой разности температур жидкость беспорядочно перемешивается. В этом случае невозможно указать определенную траекторию движения частицы.

В случае турбулентного потока происходит более равномерное перемешивание всей жидкости. Если в случае ламинарного перемешивания перемещаются целые «куски» определенной температуры, то в случае турбулентного режима жидкость имеет почти одинаковую температуру по всему объему.

Вид режима (ламинарный или турбулентный) определяется числом Релея. Число Рэлея – это безразмерная величина, оно считается по формуле

, где

g - ускорение свободного падения; измеряется в м/с2.

β - коэффициент теплового расширения жидкости; вычисляется по формуле

Где ΔV – изменение объема тела, V – начальный объем тела, ΔT – изменение температуры; измеряется в К-1.

ΔT - разность температур между поверхностью и толщей воды; измеряется в К.

L - определяющий линейный размер поверхности теплообмена; измеряется в м. Это максимальная длина на поверхности сосуда, например для круглого сосуда это диаметр, для прямоугольного – диагональ и т. д.

ν - кинематическая вязкость жидкости; численно равна ν = 0,000183/(ρ(1 + 0,0337t + 0,000221t2)), где t – температура и ρ – плотность жидкости; измеряется в 10-6 м2/с.

χ - температуропроводность жидкости; вычисляется по формуле https://pandia.ru/text/78/415/images/image006_104.gif" alt="\varkappa" width="14 height=10" height="10"> - теплопроводность, cp - удельная теплоемкость, ρ - плотность; измеряется в м2/с.

После того, как это число достигает некоторого, так называемого критического значения, в жидкости возникают конвективные потоки. Это критическое значение примерно равно. Если число Рэлея меньше 7,4 Raкрит, то никаких потоков не наблюдается. В области от 7,4 Raкрит до 9,9 Raкрит возникает один основной ламинарный поток с одной частотой колебания и много маленьких. В интервале от 9,9 Raкрит до 10,97 Raкрит возникает еще один основной ламинарный поток с другой частотой колебания, но маленькие потоки остаются. До 11,01 Raкрит появляется третий ламинарный поток с третьей частотой. После 11,01 Raкрит возникают турбулентные потоки.

Для воды и цилиндрического сосуда высотой 2,2 см и радиусом 12,5 см при комнатной температуре (200 " style="margin-left:-5.3pt;border-collapse:collapse">

ρ = 998,2 кг/м3

β = 0,00015 К-1

ν =1,004*10-6 м2/с

0,6 Вт/(м*К)

ср = 4183 Дж/(кг*К)

χ = /(cp*ρ) = 1,437e-7 м2/c

Ra = (g*β*ΔT*L3)/(ν*χ) = 3669

Разность температур 0,2° была рассчитана программой, которая создает модели испаряющейся воды.

Можно сделать вывод, что при этих условиях режим конвекции - турбулентный

2.1.3. Температура воздуха и ее влияние на температуру воды. Числа Рэлея в воздухе и тип режима перемешивания воздуха.

На температуру поверхности воды также влияет и температура окружающего воздуха.

Если температура воздуха отличается от температуры воды, происходит теплообмен между водой и воздухом за счет теплопередачи и конвекции.

Конвекция в воздухе также определяется числом Рэлея. Там оно меньше на один-два порядка, потому что вязкость и температуропроводность больше у воздуха, чем у воды.

Ниже приведены данные для расчета числа Рэлея и сами расчеты для воздуха:

ρ = 1.205 кг/м3

β = 0,00343 К-1

ν =15.11*10-6 м2/с

0.0257 Вт/(м*К)

ср = 1005 Дж/(кг*К)

χ = /(cp*ρ) = 2,122e-5 м2/c

Ra = (g*β*ΔT*L3)/(ν*χ) = 40990,072

Конвекция в воздухе

На конвекцию также влияет влавжность воздуха. Т. к. водяные пары имеют плотность меньше, чем плотность воздуха, влажный воздух легче сухого и начинает подниматься вверх. Таким образом, чем выше скорость испарения, тем выше влажность воздуха, тем интенсивнее конвекция.

2.2. Влияние влажности воздуха.

Как уже говорилось, при увеличении влажности воздуха над поверхностью воды, увеличивается конденсация т. е. уменьшается интенсивность испарения. Поэтому попытаемся разобраться, какие факторы влияют на величину влажности воздуха, для этого сначала сформулируем точное определение влажности.

Абсолютная и относительная влажность.

Абсолютная влажность воздуха – это масса водяного пара, содержащегося в кубическом метре воздуха. Из-за малой величины обычно измеряется в г/м3. Относительная влажность воздуха – это отношение текущей абсолютной влажности к максимально возможной абсолютной влажности при данной температуре. Чем выше температура, тем выше максимально возможная абсолютная влажность.

2.2.1. Связь влажности воздуха у поверхности воды с влажностью воздуха «на бесконечности».

Воздухом «на бесконечности» называется воздух, находящийся на таком удалении от поверхности жидкости, что его влажность не зависит от наличия этой поверхности. Влажность воздуха «на бесконечности» безусловно, влияет на влажность воздуха у поверхности. Пар с поверхности воды вытесняет пар, который уже был в воздухе, тем самым стремиться увеличить влажность «на бесконечности». Чем больше влажность воздуха на бесконечности, тем сложнее вытеснить поднимающемуся пару находящийся на бесконечности» пар, и тем менее интенсивно происходит испарение.

2.2.2 Связь влажности воздуха у поверхности воды со скоростью испарения.

При высокой влажности, по сути, испарение происходит с той же скоростью, но конденсация происходит быстрее, и, следовательно, можно считать, что испарение происходит медленнее. Конденсация – это обратный испарению процесс, то есть переход из газообразного состояния в жидкое.

2.2.3 Связь влажности воздуха у поверхности воды со скоростью оттока водяных паров от поверхности.

Водяные пары, если их влажность отличается от влажности на бесконечности, перемещаются от поверхности воды при помощи двух процессов: диффузии и конвекции.

Диффузия – это процесс выравнивания концентраций веществ в некотором объеме путем проникновения молекул одного вещества в другое. Она зависит от скорости движения молекул, то есть от температуры среды. Диффузия в газах проходит довольно быстро.

Конвекция – это явление передачи тепла путем перемешивания вещества. Вещество перемешивается из-за разности температур, которая может быть вызвана испарением. Конвекция, по сравнению с диффузией происходит медленно.

Можно также отметить, что ветер, уносящий пар от поверхности, влияет на скорость испарения сильнее предыдущих двух факторов.

2.2.4 Связь влажности воздуха у поверхности с геометрией поверхности.

Если площадь поверхности с которой происходит испарение маленькая – пары сразу рассеиваются в окружающем пространстве, если большая то не сразу, так как они занимают значительную область пространства. По формуле Дж. Дальтона для скорости испарения в которой указана зависимость оной от площади поверхности: Р=AS(F-f)/H где S - поверхность сосуда, F - предельная упругость при данной температуре, f - упругость пара в окружающей среде, H - давление, а A - коэффициент, зависящий от природы жидкости. Также имеет значение форма сосуда. Например, если при равной площади поверхности один сосуд будет вытянутой формы, а другой – круглый, то диффузия унесет пар быстрее от вытянутого сосуда, следовательно, испарение с него будет происходить быстрее.

Подведем итог: на скорость испарения влияют главным образом два фактора: температура поверхности воды и влажность воздуха над поверхностью, но на эти два фактора влияют множество других. На диаграмме представлена общая взаимосвязь этих факторов между собой.

Заключение.

В нашей работе мы изучили факторы, влияющие на скорость испарения воды. В результате выяснено, что на скорость испарения влияют главным образом температура на поверхности воды и влажность воздуха над сосудом, но также влияют и площадь поверхности, конвекция, диффузия, влажность «на бесконечности».

Список литературы:

1. Википедия. http://ru. wikipedia. org/wiki/ Коэффициент теплового расширения. Ссылка действительна на 02.04.2012.

2. *****. Вязкость воды. http://www. *****/article/answer/pnanetwater/vyazkost. htm Ссылка действительна на 02.04.2012.

3. Википедия. http://ru. wikipedia. org/wiki/ Температуропроводность. Ссылка действительна на 02.04.2012.

4. Википедия. http://ru. wikipedia. org/wiki/ Число Рэлея. Ссылка действительна на 02.04.2012.

5. Большая советская энциклопедия. Турбулентность. http://www. bse. *****/bse/id_81476 Ссылка действительна на 02.04.2012.

6. *****. Неустойчивости и пространственно-временные структуры. http://otherreferats. *****/physics/_0.html Ссылка действительна на 02.04.2012.

7. Википедия. http://ru. wikipedia. org/wiki/ Теплопроводность. Ссылка действительна на 02.04.2012.

8. Википедия. http://ru. wikipedia. org/wiki/ Удельная теплоёмкость. Ссылка действительна на 02.04.2012.

9. Инженерный справочник Таблицы DVPA. info. Обзор: Температура, плотность, удельная теплоемкость, объемный коэффициент теплового расширения, кинематическая вязкость, и число (критерий) Прандтля для сухого воздуха при атмосферном давлении в в диапазоне -150 /+400 oC. http://www. dpva. info/Guide/GuideMedias/GuideAir/AirMaihHeatPropAndPrandtl/ Ссылка действительна на 02.04.2012.

10. Значение слова "Испарение" в Энциклопедическом словаре Брокгауза и Ефрона. http://be. /article045569.html Ссылка действительна на 02.04.2012.

Википедия. http://ru. wikipedia. org/wiki/ Температуропроводность. Данные соответствуют 02.04.12.

Википедия. http://ru. wikipedia. org/wiki/ Число Рэлея. Данные соответствуют 02.04.12.

Большая советская энциклопедия. Турбулентность. http://www. bse. *****/bse/id_81476 Данные соответствуют 02.04.12.

*****. Неустойчивости и пространственно-временные структуры. http://otherreferats. *****/physics/_0.html Данные соответствуют 02.04.12.

Википедия. http://ru. wikipedia. org/wiki/ Коэффициент теплового расширения. Данные соответствуют 02.04.12.

*****. Вязкость воды. http://www. *****/article/answer/pnanetwater/vyazkost. htm Данные соответствуют 02.04.12.

Википедия. http://ru. wikipedia. org/wiki/ Теплопроводность. Данные соответствуют 02.04.12.

Википедия. http://ru. wikipedia. org/wiki/ Удельная теплоёмкость. Данные соответствуют 02.04.12.

Инженерный справочник Таблицы DVPA. info. Обзор: Температура, плотность, удельная теплоемкость, объемный коэффициент теплового расширения, кинематическая вязкость, и число (критерий) Прандтля для сухого воздуха при атмосферном давлении в в диапазоне -150 /+400 oC. http://www. dpva. info/Guide/GuideMedias/GuideAir/AirMaihHeatPropAndPrandtl/ Данные соответствуют 02.04.12.

Значение слова "Испарение" в Энциклопедическом словаре Брокгауза и Ефрона. http://be. /article045569.html Данные соответствуют 02.04.12.