Однофакторный дисперсионный анализ. Пример решения. Введение в дисперсионный анализ

Дисперсионный анализ позволяет исследовать различие между группами данных, определять, носят ли эти расхождения случайный характер или вызваны конкретными обстоятельствами. Например, если продажи фирмы в одном из регионов снизились, то с помощью дисперсионного анализа можно выяснить, случайно ли снижение оборотов в этом регионе по сравнению с остальными, и при необходимости произвести организационные изменения. При выполнении эксперимента в разных условиях дисперсионный анализ поможет определить, насколько влияют внешние факторы на измерения, или отклонения носят случайный характер. Если на производстве для улучшения качества продукции изменяют режим процессов, то дисперсионный анализ позволяет оценить результаты воздействия данного фактора.

На этом примере мы покажем, как выполнять дисперсионный анализ экспериментальных данных.

Задание 1 . Имеются четыре партии сырья для текстильной промышленности. Из каждой партии отобрано по пять образцов и проведены испытания на определение величины разрывной нагрузки. Результаты испытаний приведены в таблице.

71" height="29" bgcolor="white" style="border:.75pt solid black; vertical-align:top;background:white">

Рис.1


> Откройте табличный процессор Microsoft Excel. Щелкните мышью на ярлыке Лист2 (Sheet2), чтобы перейти на другой рабочий лист.

> Введите данные для дисперсионного анализа, изображенные на рис.1.

> Преобразуйте данные в числовой формат. Для этого выберите команду меню Формат Ячейки. На экранe появится окно формат ячеек (Рис.2). Выберите Числовой формат и введенные данные преобразуются к виду, показанному на рис. 3

> Выберите команду меню Сервис Анализ данных (Тоо1s * Dаtа Апа1уsis). На экранe появится окно Анализ данных (Dаtа Апа1уsis) (Рис.4).

> Щелкните мышью на строке Однофакторный дисперсионный анализ (Аnоvа: Single Factor) в списке Инструменты анализа (Апа1уsis Тоо1s).

> Нажмите кнопку ОК, чтобы закрыть окно Анализ данных (Dаtа Апа1уsis). На экране появится окно Однофакторный дисперсионный анализ для проведения дисперсионного анализа данных (Рис.5).

https://pandia.ru/text/78/446/images/image006_46.jpg" width="311" height="214 src=">

Рис.5

> Если в группе элементов управления Входные данные (Input) не установлен переключатель по строкам, то установите его, чтобы программа Ехcel воспринимала группы данных по строкам - партиям.

> Установите флажок Метки в первой строке (Labels in Firts Rom) в группе элементов управления Входные данные (Input), если первый столбец выделенного диапазона данных содержит названия строк.

> В поле ввода Альфа (А1рhа) группы элементов управления Входные данные по умолчанию отображается величина 0,05, которая связана с вероятностью возникновения ошибки в дисперсионном анализе.

> Если в группе элементов управления Параметры вывода (Input options) не установлен переключатель Новый рабочий лист (Nev Worksheet Ply), то установите его, чтобы результаты дисперсионного анализа были помещены на новый рабочий лист

> Нажмите кнопку ОК, чтобы закрыть окно Однофакторный дисперсионный анализ (Аnоvа: Single Factor). На новом рабочем листе появятся результаты дисперсионного анализа (Рис. 6).

В диапазоне ячеек А4:Е6 расположены результаты описательной статистики. В строке 4 находятся названия параметров, в строках статистические значения, вычисленные по партиям.

В столбце Счет (Соunt) расположены количества измерений, в столбце Сумма - суммы величин, в столбце Среднее (Аvегаgе) - средние арифметические значения, в столбце Дисперсия (Vаriаnсе) - дисперсии.

Полученные результаты показывают, что наибольшая средняя разрывная нагрузка в партии №3, а наибольшая дисперсия разрывной нагрузки –в партии №1.

В диапазоне ячеек А11: G 16 отображается информация, касающаяся существенности расхождений между группами данных. В строке 12 находятся названия параметров дисперсионного анализа, в строке 13 - результаты межгрупповой обработки, в строке 14 - результаты внутригрупповой обработки, а в строке 16 – суммы значений упоминавшихся двух строк.

В столбце SS (Qi ) расположены величины варьирования, т. е. суммы квадратов по всем отклонениям. Варьирование, как и дисперсия, характеризует разброс данных. По таблице можно заметить, что межгрупповой разброс разрывной нагрузки существенно выше величины внутригруппового варьирования.

В столбце df (k ) находятся значения чисел степеней свободы. Данные числа указывают на количество независимых отклонений, по которым будет вычисляться дисперсия. Например, межгрупповое число степеней свободы равняется разности количеству групп данных и единицы. Чем больше число степеней свободы, тем выше надежность дисперсионных параметров. Данные степеней свобод в таблице показывают, что для внутригрупповых результатов надежность выше, чем для межгрупповых параметров.

В столбце MS (S 2 ) расположены величины дисперсии, которые определяются отношением варьирования и числа степеней свобод. Дисперсия характеризует степень разброса данных, но в отличие от величины варьирования, не имеет прямой тенденции увеличиваться с ростом числа степеней свобод. Из таблицы видно, что межгрупповая дисперсия значительно больше внутригрупповой дисперсии.

В столбце F находится, значение F -статистики , вычисляемое отношением межгрупповой и внутригрупповой дисперсий.

В столбце F критическое (F crit) расположено F-критическое значение, рассчитываемое по числу степеней свободы и величине Альфа (А1рhа). F-статистика и F-критическое значение используют критерий Фишера -Снедекора.

Если F-статистика больше F-критического значения, то можно утверждать, что различия между группами данных носят неслучайный характер. т. е. на уровне значимости α = 0,05 (с надежностью 0,95) нулевая гипотеза отвергается и принимается альтернативная: различие между партиями сырья оказывает существенное влияние на величину разрывной нагрузки.

В столбце Р-значение (Р-value) находится значение вероятности того, что расхождение между группами случайно. Так как в таблице данная вероятность очень мала, то отклонение между группами носит неслучайный характер.

2. Решение задач двухфакторного дисперсионного анализ без повторений

Microsoft Excel располагает функцией Anova: (Two-Factor Without Replication), которая используется для выявления факта влияния контролируемых факторов А и В на результативный признак на основе выборочных данных, причем каждому уровню факторов А и В соответствует только одна выборка. Для вызова этой функции необходимо на панели меню выбрать команду Сервис –Анализ данных . На экране раскроется окно Анализ данных , в котором следует выбрать значение Двухфакторный дисперсионный анализ без повторений и щелкнуть на кнопке ОК. В результате на экране раскроется диалоговое окно, показанное на рисунке 1.

78" height="42" bgcolor="white" style="border:.75pt solid black; vertical-align:top;background:white">

2. Флажок опции Метки (Labels) устанавливается в том случае, если первая строка во входном диапазоне содержит заголовки столбцов. Если заголовки отсутствуют, флажок следует сбросить. В этом случае для данных выходного диапазона будут автоматически созданы стандартные названия.

3. В поле Aльфа вводится принятый уровень значимости α , соответствующий вероятности возникновения ошибки первого рода.

4. Переключатель в группе Output options может быть установлен в одно из трех положений: Output Range (Выходной диапазон), New Worksheet Ply (Новый рабочий лист) или New Workbook (Новая рабочая книга).

Пример.

Двухфакторный дисперсионный анализ без повторений (Anova: Two-Factor Without Replication) на следующем примере.

На рисунке. 2 представлены данные об урожайности (ц/га) четырех сортов пшеницы (четыре уровня фактора А), достигнутой при использовании пяти типов удобрений (пять уровней фактора В). Данные получены на 20 участках одинакового размера и аналогичного почвенного покрова. Необходимо определить , влияет ли сорт и тип удобрения на урожайность пшеницы.

Двухфакторный дисперсионный анализ без повторений представлены на рисунке 3.

Как видно по результатам, расчетное значение величины F-статистики для фактора А (тип удобрения) F А = l ,67 , а критическая область образуется правосторонним интервалом (3,49; +∞). Так как F А = l ,67 не попадает в критическую область, гипотезу НА: a 1 = a 2 + = ak принимаем , т. е. считаем, что в этом эксперименте тип удобрения не оказал влияния на урожайность.

Расчетное значение величины F-статистики для фактора В (сорт пшеницы) F В =2,03 , а критическая область образуется правосторонним интервалом (3,259;+∞).

Так как F В =2,03 не попадает в критическую область, гипотезу НВ : b 1 = b 2 = ... = bm

также принимаем, т. е. считаем, что в данном эксперименте сорт пшеницы также не оказал влияния на урожайность.

2. Двухфакторный дисперсионный анализ c повторениями

Microsoft Excel располагает функцией Anova: Двухфакторный дисперсионный анализ с повторениями (Two-Factor With Replication), которая также используется для выявления факта влияния контролируемых факторов А и В на результативный признак на основе выборочных данных, однако каждому уровню одного из факторов А (или В) соответствует более одной выборки данных .

Рассмотрим использование функции Двухфакторный дисперсионный анализ с повторениями на следующем примере.

Пример 2 . В таблице. 6 приведены суточные привесы (г) собранных для исследования 18 поросят в зависимости от метода удержания поросят (фактор А) и качества их кормления (фактор В).

75" height="33" bgcolor="white" style="border:.75pt solid black; vertical-align:top;background:white">

В этом диалоговом окне задаются следующие параметры.

1. В поле Входной интервал (Input Range) вводится ссылка на диапазон ячеек, содержащий анализируемые данные. Необходимо выделить ячейки от G 4 до I 13.

2. В поле Число строк для выборки (Rows per sample) определяется число выборок, которое приходится на каждый уровень одного из факторов. Каждый уровень фактора должен содержать одно и то же количество выборок (строк таблицы). В нашем случае число строк равно трем.

3. В поле Альфа (Alpha) вводится принятое значение уровня значимости α , которое равно вероятности возникновения ошибки первого рода.

4. Переключатель в группе Output options может быть установлен в одно из трех положений: Output Range (Выходной интервал), New Worksheet Ply (Новый рабочий лист) или New Workbook (Новая рабочая книга).

Результаты двухфакторного дисперсионного анализа с помощью функции Двухфакторный дисперсионный анализ сповторениями существенным. В силу того что взаимодействие указанных факторов незначимо (на 5%-ном уровне).

Задание на дом

1. В течение шести лет использовались пять различных технологий по выращиванию сельскохозяйственной культуры. Данные по эксперименту (в ц/га) приведены в таблице:

https://pandia.ru/text/78/446/images/image024_11.jpg" width="642" height="190 src=">

Требуется на уровне значимости α = 0,05 установить зависимость выпуска качественных плиток от линии выпуска (фактора А).

3. Имеются следующие данные об урожайности четырех сортов пшеницы на выделенных пяти участках земли (блоках):

https://pandia.ru/text/78/446/images/image026_9.jpg" width="598" height="165 src=">

Требуется на уровне значимости α = 0,05 установить влияние на производительность труда технологий (фактора А) и предприятий (фактора В).

Чтобы проанализировать изменчивость признака под воздействием контролируемых переменных, применяется дисперсионный метод.

Для изучения связи между значениями – факторный метод. Рассмотрим подробнее аналитические инструменты: факторный, дисперсионный и двухфакторный дисперсионный метод оценки изменчивости.

Дисперсионный анализ в Excel

Условно цель дисперсионного метода можно сформулировать так: вычленить из общей вариативности параметра 3 частные вариативности:

  • 1 – определенную действием каждого из изучаемых значений;
  • 2 – продиктованную взаимосвязью между исследуемыми значениями;
  • 3 – случайную, продиктованную всеми неучтенными обстоятельствами.

В программе Microsoft Excel дисперсионный анализ можно выполнить с помощью инструмента «Анализ данных» (вкладка «Данные» - «Анализ»). Это надстройка табличного процессора. Если надстройка недоступна, нужно открыть «Параметры Excel» и включить настройку для анализа .

Работа начинается с оформления таблицы. Правила:

  1. В каждом столбце должны быть значения одного исследуемого фактора.
  2. Столбцы расположить по возрастанию/убыванию величины исследуемого параметра.

Рассмотрим дисперсионный анализ в Excel на примере.

Психолог фирмы проанализировал с помощью специальной методики стратегии поведения сотрудников в конфликтной ситуации. Предполагается, что на поведение влияет уровень образования (1 – среднее, 2 – среднее специальное, 3 – высшее).

Внесем данные в таблицу Excel:


Значимый параметр залит желтым цветом. Так как Р-Значение между группами больше 1, критерий Фишера нельзя считать значимым. Следовательно, поведение в конфликтной ситуации не зависит от уровня образования.



Факторный анализ в Excel: пример

Факторным называют многомерный анализ взаимосвязей между значениями переменных. С помощью данного метода можно решить важнейшие задачи:

  • всесторонне описать измеряемый объект (причем емко, компактно);
  • выявить скрытые переменные значения, определяющие наличие линейных статистических корреляций;
  • классифицировать переменные (определить взаимосвязи между ними);
  • сократить число необходимых переменных.

Рассмотрим на примере проведение факторного анализа. Допустим, нам известны продажи каких-либо товаров за последние 4 месяца. Необходимо проанализировать, какие наименования пользуются спросом, а какие нет.



Теперь наглядно видно, продажи какого товара дают основной рост.

Двухфакторный дисперсионный анализ в Excel

Показывает, как влияет два фактора на изменение значения случайной величины. Рассмотрим двухфакторный дисперсионный анализ в Excel на примере.

Задача. Группе мужчин и женщин предъявляли звук разной громкости: 1 – 10 дБ, 2 – 30 дБ, 3 – 50 дБ. Время ответа фиксировали в миллисекундах. Необходимо определить, влияет ли пол на реакцию; влияет ли громкость на реакцию.

Дисперсионный анализ

1. Понятие дисперсионного анализа

Дисперсионный анализ -это анализ изменчивости признака под влиянием каких-либо контролируемых переменных факторов. В зарубежной литературе дисперсионный анализ часто обозначается как ANOVA, что переводится как анализ вариативности (Analysis of Variance).

Задача дисперсионного анализа состоит в том, чтобы из общей вариативности признака вычленить вариативность иного рода:

а) вариативность обусловленную действием каждой из исследуемых независимых переменных;

б) вариативность, обусловленную взаимодействием исследуемых независимых переменных;

в) случайную вариативность, обусловленную всеми другими неизвестными переменными.

Вариативность, обусловленная действием исследуемых переменных и их взаимодействием, соотносится со случайной вариативностью. Показателем этого соотношения является критерий F Фишера.

В формулу расчета критерия F входят оценки дисперсий, то есть параметров распределения признака, поэтому критерий F является параметрическим критерием.

Чем в большей степени вариативность признака обусловлена исследуемыми переменными (факторами) или их взаимодействием, тем выше эмпирические значения критерия .

Нулевая гипотеза в дисперсионном анализе будет гласить, что средние величины исследуемого результативного признака во всех гра­дациях одинаковы.

Альтернативная гипотеза будет утверждать, что средние вели­чины результативного признака в разных градациях исследуемого фак­тора различны.

Дисперсионный анализ позволяет нам констатировать изменение признака, но при этом не указывает направление этих изменений.

начнем рассмотрение дисперсионного анализа с простей­шего случая, когда исследуется действие только одной переменной (одного фактора).

2. Однофакторный дисперсионный анализ для несвязан­ных выборок

2.1. Назначение метода

Метод однофакторного дисперсионного анализа применяется в тех случаях, когда исследуются изменения результативного признака под влиянием изменяющихся условий или градаций какого-либо фактора. В данном варианте метода влиянию каждой из градаций фактора подвер­гаются разные выборки испытуемых. Градаций фактора должно быть не менее трех. (Градаций может быть и две, но в этом случае мы не сможем установить нели­нейных зависимостей и более разумным представляется использование более про­стых).

Непараметрическим вариантом этого вида анализа является критерий Н Крускала-Уоллиса.

Гипотезы

H 0: Различия между градациями фактора (разными условиями) являются не более выраженными, чем случайные различия внутри каждой группы.

H 1: Различия между градациями фактора (разными условиями) являются более выраженными, чем случайные различия внутри каждой группы.

2.2. Ограничения метода однофакторного дисперсионного анали­за для несвязанных выборок

1. Однофакторный дисперсионный анализ требует не менее трех града­ций фактора и не менее двух испытуемых в каждой градации.

2. Результативный признак должен быть нормально распределен в ис­следуемой выборке.

Правда, обычно не указывается, идет ли речь о распределении признака во всей обследованной выборке или в той ее части, которая составляет дисперсионный комплекс.

3. Пример решения задачи методом однофакторного дисперсионного анализа для несвязанных выборок на примере:

Три различные группы из шести испытуемых получили списки из десяти слов. Первой группе слова предъявлялись с низкой скоростью -1 слово в 5 секунд, второй группе со средней скоростью - 1 слово в 2 секунды, и третьей группе с большой скоростью - 1 слово в секунду. Было предсказано, что показатели воспроизведения будут зависеть от скорости предъявления слов. Результаты представлены в Табл. 1.

Количество воспроизведенных слов Таблица 1

№ испытуемого

низкая скорость

средняя скорость

высокая скорость

Общая сумма

H 0: Различия в объеме воспроизведения слов между группами являются не более выраженными, чем случайные различия внутри каждой группы.

H 1: Различия в объеме воспроизведения слов между группами являются более выраженными, чем случайные различия внутри каждой группы. Используя экспериментальные значения, представленные в Табл. 1, установим некоторые величины, которые будут необходимы для расчета критерия F.

Расчет основных величин для однофакторного дисперсионного анализа представим в таблице:

Таблица 2

Таблица 3

Последовательность операций в однофакторном дисперсионном анализе для несвязанных выборок

Часто встречающееся в этой и последующих таблицах обозначе­ние SS - сокращение от "суммы квадратов" (sum of squares). Это со­кращение чаще всего используется в переводных источниках.

SS факт означает вариативность признака, обусловленную действи­ем исследуемого фактора;

SS общ - общую вариативность признака;

S CA -вариативность, обусловленную неучтенными факторами, "случайную" или "остаточную" вариативность.

MS - "средний квадрат", или математическое ожидание суммы квадратов, усредненная величина соответствующих SS.

df - число степеней свободы, которое при рассмотрении непара­метрических критериев мы обозначили греческой буквой v .

Вывод: H 0 отклоняется. Принимается H 1 . Различия в объеме воспроизведения слов между группами являются более выраженными, чем случайные различия внутри каждой группы (α=0,05). Итак, скорость предъявления слов влияет на объем их воспроизведения.

Пример решения задачи в Excel представлен ниже:

Исходные данные:

Используя команду: Сервис->Анализ данных->Однофакторный дисперсионный анализ, получим следующие результаты:

) предназначен для сравнения исключительно двух совокупностей. Однако часто он неверно используется для попарного сравнения большего количества групп (рис. 1), что вызывает т.н. эффект множественных сравнений (англ. multiple comparisons; Гланц 1999, с. 101-104). Об этом эффекте и о том, как с ним бороться, мы поговорим позднее. В этом же сообщении я опишу принципы однофакторного дисперсионного анализа , как раз предназначенного для одновременного сравнения средних значений двух и более групп. Принципы дисперсионного анализа (англ. an alysis o f va riance , ANOVA) были разработаны в 1920-х гг. сэром Рональдом Эйлмером Фишером (англ. Ronald Aylmer Fisher ) - "гением, едва не в одиночку заложившим основы современной статистики " (Hald 1998).

Может возникнуть вопрос: почему метод, используемый для сравнения средних значений, называется дисперсионным анализом? Все дело в том, что при установлении разницы между средними значениями мы в действительности сравниваем дисперсии анализируемых совокупностей. Однако обо всем по порядку...

Постановка задачи

Рассмотренный ниже пример заимствован из книги Maindonald & Braun (2010). Имеются данные о весе томатов (все растение целиком; weight , в кг), которые выращивали в течение 2 месяцев при трех разных экспериментальных условиях (trt , от treatment ) - на воде (water ), в среде с добавлением удобрения (nutrient ), а также в среде с добавлением удобрения и гербицида 2,4-D (nutrient+24D ):

# Создадим таблицу с данными: tomato <- data.frame (weight= c (1.5 , 1.9 , 1.3 , 1.5 , 2.4 , 1.5 , # water 1.5 , 1.2 , 1.2 , 2.1 , 2.9 , 1.6 , # nutrient 1.9 , 1.6 , 0.8 , 1.15 , 0.9 , 1.6 ) , # nutrient+24D trt = rep (c ("Water" , "Nutrient" , "Nutrient+24D" ) , c (6 , 6 , 6 ) ) ) # Просмотрим результат: weight weight trt 1 1.50 Water 2 1.90 Water 3 1.30 Water 4 1.50 Water 5 2.40 Water 6 1.50 Water 7 1.50 Nutrient 8 1.20 Nutrient 9 1.20 Nutrient 10 2.10 Nutrient 11 2.90 Nutrient 12 1.60 Nutrient 13 1.90 Nutrient+24D 14 1.60 Nutrient+24D 15 0.80 Nutrient+24D 16 1.15 Nutrient+24D 17 0.90 Nutrient+24D 18 1.60 Nutrient+24D


Переменная trt представляет собой фактор с тремя уровнями. Для более наглядного сравнения экспериментальных условий в последующем, сделаем уровень "water " базовым (англ. reference ), т.е. уровнем, с которым R будет сравнивать все остальные уровни. Это можно сделать при помощи функции relevel() :


Чтобы лучше понять свойства имеющихся данных, визуализируем их при помощи наблюдаемые различия между групповыми средними несущественны и вызваны влиянием случайных факторов (т.е. в действительности все полученные измерения веса растений происходят из одной нормально распределенной генеральной совокупности):

Подчеркнем еще раз, что рассматриваемый пример соответствует случаю однофакторного дисперсионного анализа: изучается действие одного фактора - условий выращивания (с тремя уровнями - Water , Nutrient и Nutrient+24D ) на интересующую нас переменную-отклик - вес растений.

К сожалению, исследователь почти никогда не имеет возможности изучить всю генеральную совокупность. Как же нам тогда узнать, верна ли приведенная выше нулевая гипотеза, располагая только выборочными данными? Мы можем сформулировать этот вопрос иначе: какова вероятность получить наблюдаемые различия между групповыми средними, извлекая случайные выборки из одной нормально распределенной генеральной совокупности ? Для ответа на этот вопрос на нам потребуется статистический критерий, который количественно характеризовал бы величину различий между сравниваемыми группами.

Задание . Студентов 1-го курса опрашивали с целью выявления занятий, которым они посвящают свое свободное время. Проверьте, различаются ли распределение вербальных и невербальных предпочтений студентов.

Решение проводим с использованием калькулятора .
Находим групповые средние:

N П 1 П 2
1 12 17
2 18 19
3 23 25
4 10 7
5 15 17
x ср 15.6 17

Обозначим р - количество уровней фактора (р=2). Число измерений на каждом уровне одинаково и равно q=5.
В последней строке помещены групповые средние для каждого уровня фактора.
Общую среднюю можно получить как среднее арифметическое групповых средних:
(1)
На разброс групповых средних процента отказа относительно общей средней влияют как изменения уровня рассматриваемого фактора, так и случайные факторы.
Для того чтобы учесть влияние данного фактора, общая выборочная дисперсия разбивается на две части, первая из которых называется факторной S 2 ф, а вторая - остаточной S 2 ост.
С целью учета этих составляющих вначале рассчитывается общая сумма квадратов отклонений вариант от общей средней:

и факторная сумма квадратов отклонений групповых средних от общей средней, которая и характеризует влияние данного фактора:

Последнее выражение получено путем замены каждой варианты в выражении R общ групповой средней для данного фактора.
Остаточная сумма квадратов отклонений получается как разность:
R ост = R общ - R ф
Для определения общей выборочной дисперсии необходимо R общ разделить на число измерений pq:

а для получения несмещенной общей выборочной дисперсии это выражение нужно умножить на pq/(pq-1):

Соответственно, для несмещенной факторной выборочной дисперсии:

где p-1 - число степеней свободы несмещенной факторной выборочной дисперсии.
С целью оценки влияния фактора на изменения рассматриваемого параметра рассчитывается величина:

Так как отношение двух выборочных дисперсий S 2 ф и S 2 ост распределено по закону Фишера-Снедекора, то полученное значение f набл сравнивают со значением функции распределения

в критической точке f кр, соответствующей выбранному уровню значимости a.
Если f набл >f кр, то фактор оказывает существенное воздействие и его следует учитывать, в противном случае он оказывает незначительное влияние, которым можно пренебречь.
Для расчета R набл и R ф могут быть использованы также формулы:
(4)
(5)
Находим общую среднюю по формуле (1):
Для расчета Rобщ по формуле (4) составляем таблицу 2 квадратов вариант:
N П 2 1 П 2 2
1 144 289
2 324 361
3 529 625
4 100 49
5 225 289
1322 1613

Общая средняя вычисляется по формуле (1):

R общ = 1322 + 1613 - 5 2 16.3 2 = 278.1
Находим R ф по формуле (5):
R ф = 5(15.6 2 + 17 2) - 2 16.3 2 = 4.9
Получаем R ост: R ост = R общ - R ф = 278.1 - 4.9 = 273.2
Определяем факторную и остаточную дисперсии :


Если средние значения случайной величины, вычисленные по отдельным выборкам одинаковы, то оценки факторной и остаточной дисперсий являются несмещенными оценками генеральной дисперсии и различаются несущественно.
Тогда сопоставление оценок этих дисперсий по критерию Фишера должно показать, что нулевую гипотезу о равенстве факторной и остаточной дисперсий отвергнуть нет оснований.
Оценка факторной дисперсии меньше оценки остаточной дисперсии, поэтому можно сразу утверждать справедливость нулевой гипотезы о равенстве математических ожиданий по слоям выборки.
Иначе говоря, в данном примере фактор Ф не оказывает существенного влияния на случайную величину.
Проверим нулевую гипотезу H 0: равенство средних значений х.
Находим f набл

Для уровня значимости α=0.05, чисел степеней свободы 1 и 8 находим f кр из таблицы распределения Фишера-Снедекора .
f кр (0.05; 1; 8) = 5.32
В связи с тем, что f набл < f кр, нулевую гипотезу о существенном влиянии фактора на результаты экспериментов отклоняем.
Другим словами, распределение вербальных и невербальных предпочтений студентов различаются.

Задание . На заводе установлено четыре линии по выпуску облицовочной плитки. С каждой линии случайным образом в течение смены отобрано по 10 плиток и сделаны замеры их толщины (мм). Отклонения от номинального размера приведены в таблице. Требуется на уровне значимости a = 0,05 установить наличие зависимости выпуска качественных плиток от линии выпуска (фактор A).

Задание . На уровне значимости a = 0,05 исследовать влияние цвета краски на срок службы покрытия.

Пример №1 . Произведено 13 испытаний, из них – 4 на первом уровне фактора, 4 – на втором, 3 – на третьем и 2 на четвертом. Методом дисперсионного анализа при уровне значимости 0,05 проверить нулевую гипотезу о равенстве групповых средних. Предполагается, что выборки извлечены из нормальных совокупностей с одинаковыми дисперсиями. Результаты испытаний приведены в таблице.

Решение :
Находим групповые средние:

N П 1 П 2 П 3 П 4
1 1.38 1.41 1.32 1.31
2 1.38 1.42 1.33 1.33
3 1.42 1.44 1.34 -
4 1.42 1.45 - -
5.6 5.72 3.99 2.64
x ср 1.4 1.43 1.33 1.32

Обозначим р - количество уровней фактора (р=4). Число измерений на каждом уровне равно: 4,4,3,2
В последней строке помещены групповые средние для каждого уровня фактора.
Общая средняя вычисляется по формуле:

Для расчета Sобщ по формуле (4) составляем таблицу 2 квадратов вариант:

N П 2 1 П 2 2 П 2 3 П 2 4
1 1.9 1.99 1.74 1.72
2 1.9 2.02 1.77 1.77
3 2.02 2.07 1.8 -
4 2.02 2.1 - -
7.84 8.18 5.31 3.49

Общую сумму квадратов отклонений находят по формуле:


Находим S ф по формуле:


Получаем S ост: S ост = S общ - S ф = 0.0293 - 0.0263 = 0.003
Определяем факторную дисперсию:

и остаточную дисперсию:

Если средние значения случайной величины, вычисленные по отдельным выборкам одинаковы, то оценки факторной и остаточной дисперсий являются несмещенными оценками генеральной дисперсии и различаются несущественно.
Тогда сопоставление оценок этих дисперсий по критерию Фишера должно показать, что нулевую гипотезу о равенстве факторной и остаточной дисперсий отвергнуть нет оснований.
Оценка факторной дисперсии больше оценки остаточной дисперсии, поэтому можно сразу утверждать не справедливость нулевой гипотезы о равенстве математических ожиданий по слоям выборки.
Иначе говоря, в данном примере фактор Ф оказывает существенное влияния на случайную величину.
Проверим нулевую гипотезу H 0: равенство средних значений х.
Находим f набл

Для уровня значимости α=0.05, чисел степеней свободы 3 и 12 находим f кр из таблицы распределения Фишера-Снедекора.
f кр (0.05; 3; 12) = 3.49
В связи с тем, что f набл > f кр, нулевую гипотезу о существенном влиянии фактора на результаты экспериментов принимаем (нулевую гипотезу о равенстве групповых средних отвергаем). Другими словами, групповые средние в целом различаются значимо.

Пример №2 . В школе 5 шестых классов. Психологу ставится задача, определить, одинаковый ли средний уровень ситуативной тревожности в классах. Для этого были приведены в таблице. Проверить уровень значимости α=0.05 предположение, что средняя ситуативная тревожность в классах не различается.

Пример №3 . Для изучения величины X произведено 4 испытания на каждом из пяти уровней фактора F. Результаты испытаний приведены в таблице. Выяснить, существенно ли влияние фактора F на величину X. Принять α = 0.05. Предполагается, что выборки извлечены из нормальных совокупностей с одинаковыми дисперсиями.

Пример №4 . Предположим, что в педагогическом эксперименте участвовали три группы студентов по 10 человек в каждой. В группах применили различные методы обучения: в первой - традиционный (F 1), во второй - основанный на компьютерных технологиях (F 2), в третьей - метод, широко использующий задания для самостоятельной работы (F 3). Знания оценивались по десятибалльной системе.
Требуется обработать полученные данные об экзаменах и сделать заключение о том, значимо ли влияние метода преподавания, приняв за уровень значимости α=0.05.
Результаты экзаменов заданы таблицей, F j - уровень фактора x ij - оценка i-го учащегося обучающегося по методике F j .

Уровень фактора

Пример №5 . Показаны результаты конкурсного сортоиспытания культур (урожайность в ц.с га). Каждый сорт испытывался на четырех участках. Методом дисперсионного анализа изучите влияние сорта на урожайность. Установите существенность влияния фактора (долю межгрупповой вариации в общей вариации) и значимость результатов опыта при уровне значимости 0,05.
Урожайность на сортоиспытательных участках

Сорт Урожайность по повторностям ц. с га
1 2 3 4
1
2
3
42,4
52,5
52,3
37,4
50,1
53,0
40,7
53,8
51,4
38,2
50,7
53,6