Межклеточное вещество (матрикс). Внеклеточный матрикс Протеогликаны и гликоаминогликаны - властелины

Межклеточный матрикс - это надмолекулярный комплекс, образованный сложной сетью связанных между собой макромолекул.

В организме межклеточный матрикс формирует такие высокоспециализированные структуры, как хрящ, сухожилия, базальные мембраны, а также (при вторичном отложении фосфата кальция) кости и зубы. Эти структуры различаются между собой как по молекулярному составу, так и по способам организации основных компонентов (белков и полисахаридов) в различных формах межклеточного матрикса.

Химический состав межклеточного матрикса

В состав межклеточного матрикса входят: 1). Коллагеновые иэластиновые волокна . Они придают ткани механическую прочность, препятствуя ее растяжению; 2).аморфное вещество в виде ГАГ и протеогликанов. Оно удерживает воду и минеральные вещества, препятствует сдавливанию ткани; 3).неколлагеновые структурные белки - фибронектин, ламинин, тенасцин, остеонектин и др. Кроме того, в межклеточном матриксе может присутствоватьминеральный компонент - в костях и зубах: гидроксиапатит, фосфаты кальция, магния и т.д. Он придает механическую прочность костям, зубам, создает запас в организме кальция, магния, натрия, фосфора.

Функция межклеточного матрикса

Межклеточный матрикс выполняет в организме разнообразные функции:

    образует каркас органов и тканей;

    является универсальным «биологическим» клеем;

    участвует в регуляции водно-солевого обмена;

    образует высокоспециализированные структуры (кости, зубы, хрящи, сухожилия, базальные мембраны).

    окружая клетки, влияет на их прикрепление, развитие, пролиферацию, организацию и метаболизм.

1. Коллаген

Коллаген - фибриллярный белок, основной структурный компонент межклеточного матрикса. Коллаген обладает огромной прочностью (Коллаген прочнее стальной проволоки того же сечения, он может выдерживать нагрузку в 10000 раз большую собственного веса) и практически не растяжим. Это самый распространенный белок организма, на него приходиться от 25 до 33% общего количества белка в организме, т.е. 6% массы тела. Около 50% всех коллагеновых белков содержится в тканях скелета, около 40% - в коже и 10% - в строме внутренних органов.

Строение коллагена

Под коллагеном понимают два вещества: тропоколлаген и проколлаген.

Молекула тропоколлагена состоит из 3 α-цепей. Известно около 30 видов α-цепей, отличающихся между собой аминокислотным составом. Большинство α-цепей содержит около 1000АК. В тропоколлагене содержится 33% глицина, 25% пролина и 4-оксипролина, 11% аланина, есть гидроксилизин, мало гистидина, метионина и тирозина, нет цистеина и триптофана.

    Первичная структура α-цепей состоит из повторяющейся аминокислотной последовательности: Глицин- X - Y . ВX положении чаще всего находиться пролин, а вY – 4-оксипролин или 5-оксилизин.

    Пространственная структура α-цепи представлена левозакрученной спиралью в витке которой находиться 3 АК.

    3 α-цепи скручиваются друг с другом в правозакрученную суперспираль тропоколлагена . Она стабилизируется водородными связями, радикалы АК направлены наружу.

Молекула проколлагена устроена также как и тропоколлагена, но на ее концах находятсяС- и N -пропептиды, образующие глобулы. N-концевой пропептид состоит из 100АК, С-концевой пропептид – из 250АК. С- иN-Протеопептиды содержат цистеин, который через дисульфидные мостики образует глобулярную структуру.

10.07.2017 Аврора

В материалах на нашем сайте мы часто упоминаем понятие «внеклеточный матрикс», но до сих пор не говорили подробно о его составе и структуре. В этой статье мы полностью расшифруем этот термин и покажем, какие вещества содержатся в матриксе, для чего они нужны, а главное — как сохранить здоровье межклеточной среды.

Итак, в организме человека клетки составляют примерно 20%, а остальные 80% — внеклеточный матрикс. Может возникнуть ощущение, что матрикс – это некая субстанция, в которой плавают клетки. На самом деле нигде ничего не плавает, все имеет строго упорядоченную структуру. Она может отличаться в различных тканях, но в большинстве случаев картина примерно одинакова.

Начнем со схематического изображения клеточной мембаны. Это двойной слой липидов, большинство из которых – фосфолипиды.

Интегрины, дистрогликаны и рецепторы домена дискоидина (DDR) – белки, пронизывающие мемрану клетки. Это клеточные рецепторы, взаимодействующие с внешней средой и передающие различные межклеточные сигналы.

А далее следует базальная мембрана, отделяющая клетку от соединительной ткани (матрикса). То есть клетки большинства тканей не контактируют с матриксом напрямую. Базальная мембрана формируется ламинином (светлая пластинка) и коллагеном 4 типа (темная пластинка). Связанные белком нидогеном (или энтактином), они образуют пространственную структуру и в первую очередь играют роль механической поддержки и защиты клеток. Фибронектин – гликопротеин, также отвечающий за структуру ткани, может формировать мультимерные цепочки. Участвует в адгезии, то есть сцеплении, клеток.

Также здесь находятся молекулы протеина перлекана. Он помогает поддерживать эндотелиальный барьер — физиологический барьер между кровеносной системой и центральной нервной системой. Он защищает нервную ткань от циркулирующих в крови микроорганизмов, токсинов, клеточных и гуморальных факторов иммунной системы, которые воспринимают нервную ткань как чужеродную. Протеогликан агрин играет ключевую роль в нейромышечном соединении, отвечая за доставку нервных импульсов к мышечным клеткам.

Двигаемся дальше, где начинается уже собственно межклеточный матрикс или соединительная ткань. Он пронизан волокнами коллагена. Это фибриллярный белок, составляющий основу соединительной ткани организма (сухожилия, кости, хрящи, дерма и т.д.) и обеспечивающий её прочность и эластичность.

Эластин формирует трехмерную сеть белковых волокон. Эта сеть не только важна для механической прочности ткани, но также обеспечивает контакты между клетками, формирует пути миграции клеток, вдоль которых они могут перемещаться (например, при эмбриональном развитии), изолирует разные клетки и ткани друг от друга (например, обеспечивает скольжение в суставах).

Аггрекан (протеогликановый хондроитинсульфат) – связывает воду, гиалуроновую кислоту и белки и формирует осмос, соответственно наделяя соединительную ткань, в том числе межпозвоночные диски и другие хрящи, устойчивостью к большим нагрузкам.

Гиалуроновая кислота участвует в регенерации ткани. Содержится во многих биологических жидкостях, в том числе синовиальной, отвечает за вязкость соединительной ткани. В связке с аггреканом формирует устойчивость к компрессии. Также гиалуроновая кислота - основной компонент биологической смазки и суставного хряща, в котором присутствует в виде оболочки каждой клетки (хондроцита).

Осталось упомянуть Коллаген 7 типа, который играет роль связующего структурного элемента. Например, в коже это якорные фибриллы в связке дермы (собственно кожи) и эпидермиса.

Безусловно, в состав матрикса также входит вода – от 25% в костной ткани до 90% в плазме крови.

Итак, что мы видим перед собой в итоге? – упорядоченную структуру, которая так или иначе встречается во всех тканях человека.

Например, на изображении слева — многослойный эпителий роговицы глаза. Состоит из плоских клеток верхнего слоя, среднего слоя, удлиненных клеток базального слоя, а затем идет базальная мембрана и соединительная ткань.
А справа эпителий трахеи – и здесь мы видим в целом то же самое. Только в верхнем слое находятся бокаловидные клетки. Далее следует базальная мембрана и матрикс.
А что за клетки мы наблюдаем в самой соединительной ткани? В большинстве тканей это фибробласты – клетки, вырабатывающие коллаген, эластин и протеогликаны. Также там могут находится жировые клетки, плазматические клетки, в хрящах – хондробласты и хондроциты и т.д. в зависимости от типа ткани.

Обратите внимание, что матрикс в обоих случаях имеет видимую структуру, хотя на снимках она не очень четкая. Упорядоченная структрура межклеточного матрикса — это признак молодости и здоровья. Но со временем воздействия внешних и внутренних факторов приводят к постепенному разрушению этой структуры – соответственно клетки перестают получать достаточное питание для их нормального роста и деления, ухудшается нервная проводимость, связь между клетками, их мобильность.

Введение

Главными тканями позвоночных являются нервная, мышечная, эпителиальная и соединительная. Клетки в тканях находятся в контакте с большим количеством внеклеточных макромолекул, объединенных в понятие внеклеточный матрикс. В некоторых тканях клетки взаимодействуют при помощи прямых контактов между собой.

Эпителиальная и соединительная ткани являются полярными, если судить по типу взаимоотношений клеток и матрикса. В соединительных тканях значительную часть объема занимает внеклеточное пространство, заполненное молекулами внеклеточного матрикса. Межклеточное вещество соединительной ткани определяет основные её свойства.

В эпителии клетки занимают большую часть объема ткани, образуя плотные слои. Их внеклеточный матрикс беден и представляет собой тонкую основу, называемую базальной мембраной. Она располагается на границе между эпителием и соединительной тканью и играет большую роль в контроле жизнедеятельности клеток. Через цитоплазму каждой эпителиальной клетки проходят тонкие внутриклеточные филаменты. Эти филаменты прямо или опосредованно соединяются с трансмембранными белками в плазматической мембране и, таким образом, образуют специфические соединения между клетками и подлежащей мембраной.

Биомедицинское значение внеклеточного матрикса

  • Продвижение клеток во время эмбриогенеза зависит от молекул матрикса
  • Острые и хронические воспаления разворачиваются в тканях при активном посредничестве молекул матрикса
  • Проблема метастазирования опухолевых клеток тесно связана с внеклеточным матриксом.
  • Наиболее распространенные заболевания - ревматоидный артрит, остеоартрит, атеросклероз - протекают с участием молекул внеклеточного матрикса.
  • Широкий спектр коллагеновых заболеваний связан с генетическими нарушениями обмена молекул матрикса
  • Дефекты лизосомных гидролаз приводят к тяжелым последствиям (мукополисахаридозы).
  • Старение и проблемы косметики тесно связаны с возможностями влияния на обмен молекул матрикса.

В большинстве органов молекулы матрикса образуются клетками, называемыми фибробластами или клетками этого семейства (хондробласты в хряще и остеобласты в костной ткани). Их называют постоянными клетками. К этому типу клеток относят также макрофаги (гистиоциты), тканевые базофилы (тучные клетки, лаброциты, гепариноциты), адипоциты (липоциты), мезенхимные клетки, перициты.

На молекулярный состав межклеточного вещества оказывают влияние и транзиторные клетки. Эти клетки мигрируют в соединительную ткань из крови в ответ на специфический стимул. К ним относятся лимфоциты, плазматические клетки, эозинофилы, нейтрофилы, базофилы и др.

В состав межклеточного матрикса входят 3 основных класса белковых молекул:

  • протеогликаны (ПГ ) - представлены белками, соединенными с полисахаридами - гликозаминогликанами (ГАГ)
  • фибриллярные белки двух функциональных типов: преимущественно структурные (семейства коллагена и эластина) и преимущественно адгезивные (семейства фибронектина или ламинина).

Все названные белки относятся к группе белково-углеводных комплексов.

НАУКА


Теория межклеточного матрикса

Все мы знаем, что человеческий организм состоит из клеток, но мало кто задумывается о том, что их количество составляет примерно 20% от всего организма. Остальные 80% состоят из “межклеточного матрикса” . Что такое “межклеточный матрикс”? Как его можно увидеть?

Наиболее наглядным примером межклеточного матрикса в человеческом организме является костная ткань.

Клеточная основа костной ткани это - Остеобласт. Это клетки размером 5-7 микрон, которые строят костную ткань. Количество их еще меньше по массе, чем 20%. Человеческая кость состоит из кристаллов гидроксиапатита, коллагена(тип I) и т.д. Все остальное - это межклеточный матрикс.


Теория старения человека

Даже если клетки будут на 100% здоровыми, в старости разрушение межклеточного матрикса происходит в первую очередь. Как результат, кожа становится дряблой, межклеточный матрикс разрушается, кожа “повисает”, и мы видим все признаки старения кожи невооруженным глазом. То же самое мы можем видеть и на примере костей. Люди болеют не от того, что клетки ведут себя “не так”. От остеопороза кости становятся хрупкими, в первую очередь, по причине разрушения межклеточного матрикса.

Те же проблемы возникают при облысении. В человеческом волосе нет клеток, наоборот - волосы состоят из продуктов жизнедеятельности клеток, а это - межклеточный матрикс в чистом виде. Когда разрушается межклеточный матрикс - наши волосы выпадают.

В ПОЛЬЗУ ЭТОЙ ТЕОРИИ ГОВОРЯТ СЛЕДУЮЩИЕ ФАКТЫ:

Возьмем восстановление структуры в качестве примера, или процесс регенерации.

Например, человек порезался. Восстановление клеток идет примерно с одинаковой скоростью, что у ребенка, что у пожилого человека. Разница в скорости зарастания ран исчисляется процентами, но никак не на порядок. У пожилых людей раны зарастают так же быстро, с соизмеримой скоростью, что и у молодых. Если у молодого человека неглубокий порез затягивается в течение недели, то у пожилого - 8-10 дней. Разница не является кардинальной, клетки делятся и регенерируются примерно с одинаковой скоростью на протяжении всей жизни человека, если он здоров. Это говорит о том, что клетки в порядке, и с возрастом они не теряют своей способности к регенерации, к делению.

Долгие годы для ведущих ученых мира было большой загадкой - как происходит питание клеток на самом деле? Всем давно понятно, что все питательные вещества проникают в клетки с кровью по кровеносным сосудам, по капиллярам. А дальше как? Если вы возьмете микроскоп и посмотрите на ваши клетки - вы обнаружите, что капилляры не подходят к каждой клетке вашего организма, а снабжает кислородом и питательными веществами очень большие группы клеток. Что дальше?

Межклеточный матрикс имеет очень сложное строение. В межклеточном матриксе образуются пути для транспортировки полезных веществ и вывода отработанных продуктов, причем эти пути не всегда существуют, а в зависимости от времени суток, состояния человека могут образовываться в виде “туннелей”, шоссе и т.д. Они могут образовываться на одном и том же месте. Это как аналогия полос с реверсивным движением на дорогах, когда люди едут в одном направлении утром и в противоположном вечером.

СТРУКТУРА МЕЖКЛЕТОЧНОГО МАТРИКСА ДО КОНЦА НЕ ИЗВЕСТНА.

Но совершенно четко доказано: межклеточный матрикс состоит из нескольких основных компонентов. В научном сообществе общепринято, что основной составляющей межклеточного матрикса является - гиалуроновая кислота. Поэтому она сейчас очень модна, повсеместно применяется в косметических кремах, БАДах и тд. Кроме того, в него входит коллаген или аморфный белок, хондроитин, в частности, хондроитин-сульфат, которого особенно много в суставах. И кроме этого последние исследования показывают, что наиболее важным элементом является кремнезем. Он образует первичную структуру, которая состоит из соединений кремния (SiO2). Очень напоминает строки из Библии, когда «Бог создал человека из глины», а глина как мы знаем, состоит из кремнезема, оксида кремния.

Хотя количества кремния в тканях человеческого организма не большое (всего 2%), но он играет огромную роль. Несмотря на то, что кремния очень много в природе - это основной элемент в земной коре, биодоступного кремния очень мало. Обычный кремнезем (песок, пыль, земля) очень химически инертное вещество, которое не вступает в химические реакции. Вроде бы его много, а взять его организму практически негде.

Остеокласты

Остеоциты

Остеобласты

КЛЕТКИ КОСТНОЙ ТКАНИ

ФункциИ костной ткани

ЛЕКЦИЯ №

Тема: Биохимия костной ткани

Факультеты: стоматологический.

Костная ткань является разновидностью соединительной ткани с высокой минерализацией межклеточного вещества.

1. Формообразующая

2. Опорная (фиксация мышц, внутренних органов)

3. Защитная (грудная клетка, череп и т.д.)

4. Запасающая (депо минеральных веществ: кальция, магния, фосфора, натрия и т.д.).

5. Регуляция КОС (при ацидозе отдает Na + , Ca 3 (PO 4) 2)

В организме человека выделяют 2 типа костной ткани: ретикулофиброзная (губчатое костное вещество) и пластинчатая (компактное костное вещество). Из них образованы различные виды костей: трубча­тые, губчатые и т. п.

Как и любая ткань, костная ткань состоит из клеток и межклеточного матрикса.

В костной тканивыделяются 2 типа клеток мезенхимального происхождения.

1 тип:

а) стволовые остеогенные клетки;

б) полустволовые стромальные клетки;

в) остеобласты (из них образуются остеоциты);

г) остеоциты;

2 тип:

а) стволовые кроветворные клетки;

б) полустволовые кроветворные клетки (из них образуются миелоидные клетки, макрофаги);

в) унипотентная колонеообразующая моноцитарная клетка (из нее образуется монобласт → промоноцит → моноцит → остеокласт);

Молодые, не делящиеся клетки, создающие костную ткань. Имеют различную форму: кубическую, пирамидальную, угловатую. Содержат 1 ядро. В цитоплазме хорошо развиты широховатая ЭПС, митохондрии и комплекс Гольджи. В клетке много РНК, высокая активность щелочной фосфатазы, активен биосинтез белка (коллагена, протеогликаны, ферменты).

Встречаются только в глубоких слоях надкостницы и в местах регенерации костной ткани. Покрывают всю поверхность развивающейся костной балки.

Преобладающие клетки костной ткани, образуются из остеобластов. Не способны к делению, имеют отросчатую форму, крупное ядро в центре клетки, содержат мало органелл, не имеют центриолей. Располагаются в лакунах, вырабатывают компоненты межклеточного вещества.

Гигантские многоядерные клетки гематогенной природы. В клетке выделяют 2 зоны. В клетке много вакуолей, митохондрий, лизосом. Немного рибосом, слабо развит шероховатый ЭПС.

Активность остеокластов регулируются Т-лимфоцитами через цитокины. Остеокласты способны разрушать обызвествленный хрящ или кость. Они выделяют в межклеточную жидкость СО 2 и карбоангидразу. Н 2 О + СО 2 = Н 2 СО 3 Накопление кислот приводит разрушение кальциевых солей и органической матрицы.


В состав межклеточного матрикса костной ткани входят органические и неорганические вещества. В компактной кости неорганический компонент составляет 70% массы кости, органический компонент - 20% массы кости, вода – 10% массы кости. При этом по объе­му на неорганический компонент приходится только около ¼ кости; остальную часть занимает органический компонент и вода.

В губчатой костной ткани неорганический компонент составляет 33-40% массы кости, органический компонент - 50% массы кости, вода – 10% массы кости.

Органический компоненткостной ткани состоит в основном (90-95%) из коллагеновых волокон (коллаген 1 типа), которые содержат много оксипролина, лизина, фосфата, связанного с серином, и мало гидроксилизина.

Органический компонент костной ткани содержит незначительное количество протеогликанов и ГАГ. Основным представителем является хондроитин-4-сульфат, немного хондроитин-6-сульфата, кератансульфата, гиалуроновой кислоты.

В костной ткани находятся неколлагеновые структурные белки остеокальцин, остеонектин, остеоронтин и др. Остеонектин является посредником кальцификации, он связывает кальций и фосфор с коллагеном. Пептид (49АК), содержащий 3 остатка γ-карбоксиглутаминовой кисло­ты. В синтезе этого пептида участвует витамин К, он обеспечивает карбоксилирование глутаминовой кислоты.

В косной ткани содержатся ферменты: щелочная фосфатаза (много в растущих костях), кислая фосфатаза (мало), коллагеназа, пирофосфатаза. Фосфотазы выделяют фосфат из органических соединений. Пирофосфатаза разрушает пирофосфат, который является ингибитором кальцификации.

Также органический компонент представлен различными органическими кислотами фумаровой, яблочной, молочной и т.д. Присутствуют липиды.

Минеральный компонент костной ткани взрослого человека состоит глав­ным образом из гидроксиапатита (приблизительный состав Са 10 (РО 4) 6 (ОН) 2), кроме того, он включает фосфаты кальция (Са 3 (РО 4) 2), магния (Mg 3 (РО 4) 2), карбонаты, фториды, гидроксиды, цитраты (1%) и т.д. В состав костей входит большая часть Mg 2+ , около четверти Na + и небольшая часть К + , содержа­щихся в организме. У детей раннего возраста в минеральном компоненте костной ткани преобладает аморфный фосфат кальция (Са 3 (РО 4) 2), он является лабильным резервом кальция и фосфора.

Кри­сталлы гидроксиапатита имеют форму пластинок или палочек толщиной около 8-15Å, шириной 20-40Å, длиной 200-400Å. В кристаллической решетке гидроксиапатита Са 2+ может замещаться другими двухвалентными катионами. В растущую кристал­лическую решетку гидроксиапатита могут внедряться ионы тяжелых металлов: свинец, радий, уран и тяжелые элементы, образующиеся при рас­паде урана, например стронций.

Анионы, отличные от фосфата и гидроксила, либо адсорбируются на большой поверхности, образуемой малень­кими кристаллами либо растворяются в гидратной оболочке кри­сталлической решетки. Ионы Na + адсорбируются на поверхности кристаллов.

Между собой кри­сталлы гидроксиапатита связываются через Са 2+ с помощью остатков γ-карбоксиглутаминовой кисло­ты пептида (49 АК).

Вследствие кристаллической структуры образованной органическими и неорганическими компонентами модуль упругости кости сходен с бетоном.