Магнитное поле прямого провода и соленоида. Атомные токи. Магнитная индукция поля, создаваемого бесконечно длинным прямым проводником с током, –

Электрический ток в проводнике образует магнитное поле вокруг проводника. Электрический ток и магнитное поле - это две неотделимые друг от друга части единого физического процесса. Магнитное поле постоянных магнитов в конечном счете также порождается молекулярными электрическими токами, образованными движением электронов по орбитам и вращением их вокруг своих осей.

Магнитное поле проводника и направление его силовых линий можно определить при помощи магнитной стрелки. Магнитные линии прямолинейного проводника имеют форму концентрических окружностей, расположенных в плоскости, перпендикулярной проводнику. Направление магнитных силовых линий зависит от направления тока в проводнике. Если ток в проводнике идет от наблюдателя, то силовые линии направлены по часовой стрелке.

Зависимость направления поля от направления тока определяется правилом буравчика: при совпадении поступательного движения буравчика с направлением тока в проводнике направление вращения ручки совпадает с направлением магнитных линий.

Правилом буравчика можно пользоваться и для определения направления магнитного поля в катушке, но в следующей формулировке: если направление вращения рукоятки буравчика совместить с направлением тока в витках катушки, то поступательное движение буравчика покажет направление силовых линий поля внутри катушки (рис. 4.4).

Внутри катушки эти линии идут от южного полюса к северному, а вне ее - от северного к южному.

Правилом буравчика можно пользоваться также и при определении направления тока, если известно направление силовых линий магнитного поля.

На проводник с током, находящийся в магнитном поле, действует сила, равная

F = I·L·B·sin

I - сила тока в проводнике; B - модуль вектора индукции магнитного поля; L - длина проводника, находящегося в магнитном поле;  - угол между вектором магнитного поля инаправлением тока впроводнике.

Силу, действующую на проводник с током в магнитном поле, называют силой Ампера.

Максимальная сила Ампера равна:

F = I·L·B

Направление силы Ампера определяется по правилу левой руки: если левую руку расположить так, чтобы перпендикулярная составляющая вектора магнитной индукции В входила в ладонь, а четыре вытянутых пальца были направлены по направлению тока, то отогнутый на 90 градусов большой палец покажет направление силы, действующей на отрезок проводника с током, то есть силы Ампера.

Если и лежат в одной плоскости, то угол между и прямой, следовательно . Тогда сила, действующая на элемент тока ,

(разумеется, со стороны первого проводника на второй действует точно такая же сила).

Результирующая сила равна одной из этих сил. Если эти два проводника будут воздействовать на третий, тогда их магнитные поля и нужно сложить векторно.

Контур с током в магнитном поле

Рис. 4.13

Пусть в однородное магнитное поле помещена рамка с током (рис. 4.13). Тогда силы Ампера, действующие на боковые стороны рамки, будут создавать вращающий момент, величина которого пропорциональна магнитной индукции, силе тока в рамке, ее площади S и зависит от угла a между вектором и нормалью к площади :

Направление нормали выбирают так, чтобы в направлении нормали перемещался правый винт при вращении по направлению тока в рамке.

Максимальное значение вращательный момент имеет тогда, когда рамка устанавливается перпендикулярно магнитным силовым линиям:

Это выражение также можно использовать для определения индукции магнитного поля:

Величину, равную произведению , называют магнитным моментом контура Р т . Магнитный момент есть вектор, направление которого совпадает с направлением нормали к контуру. Тогда вращательный момент можно записать

При угле a = 0 вращательный момент равен нулю. Значение вращательного момента зависит от площади контура, но не зависит от его формы. Поэтому на любой замкнутый контур, по которому течет постоянный ток, действует вращательный момент М , который поворачивает его так, чтобы вектор магнитного момента установился параллельно вектору индукции магнитного поля.

Электрический ток, протекающий по проводнику, создает вокруг этого проводника магнитное поле (рис. 7.1). Направление возникающего магнитного поля определяется направлением тока.
Способ обозначения направления электрического тока в проводнике показан на рис. 7.2: точку на рис. 7.2(а) можно воспринимать как острие стрелки, указывающей направление тока к наблюдателю, а крестик – как хвост стрелки, указывающей направление тока от наблюдателя.
Магнитное поле, возникающее вокруг проводника с током, показано на рис. 7.3. Направление этого поля легко определяется с помощью правила правого винта (или правила буравчика): если острие буравчика совместить с направлением тока, то при его завинчивании направление вращения рукоятки будет совпадать с направлением магнитного поля.

Рис. 7.1. Магнитное поле вокруг проводника с током.


Рис. 7.2. Обозначение направления тока (а) к наблюдателю и (б) от на-блюдателя.


Поле, создаваемое двумя параллельными проводниками

1. Направления токов в проводниках совпадают. На рис. 7.4(а) изображены два параллельных проводника, расположенные на некотором расстоянии друг от друга, причем магнитное поле каждого проводника изображено отдельно. В промежутке между проводниками создаваемые ими магнитные поля противоположны по направлению и компенсируют друг друга. Результирующее магнитное поле показано на рис. 7.4(б). Если из-менить направление обоих токов на обратное, то изменится на обратное и направление результирующего магнитного поля (рис. 7.4(б)).


Рис. 7.4. Два проводника с одинаковыми направлениями токов (а) и их результирующее магнитное поле (6, в).

2. Направления токов в проводниках противоположны. На рис. 7.5(а) показаны магнитные поля для каждого проводника по отдельности. В этом случае в промежутке между проводниками их поля суммируются и здесь результирующее поле (рис. 7.5(б)) максимально.


Рис. 7.5. Два проводника с противоположными направлениями токов (а) и их результирующее магнитное поле (б).


Рис. 7.6. Магнитное поле соленоида.

Соленоид – это цилиндрическая катушка, состоящая из большого числа витков проволоки (рис. 7.6). Когда по виткам соленоида протекает ток, соленоид ведет себя как полосовой магнит с северным и южным полюсами. Создаваемое им магнитное поло ничем не отличается от ноля постоянного магнита. Магнитное поле внутри соленоида можно усилить, намотав катушку на магнитный сердечник из стали, железа или друго¬го магнитного материала. Напряженность (величина) магнитного поля соленоида зависит также от силы пропускаемого электрического тока и числа витков.

Электромагнит

Соленоид можно использовать в качестве электромагнита, при этом сердечник делается из магнитомягкого материала, например ковкого железа. Соленоид ведет себя как магнит только в том случае, когда через катушку протекает электрический ток. Электромагниты применяются в электрических звонках и реле.

Проводник в магнитном поле

На рис. 7.7 изображен проводник с током, помещенный в магнитное поле. Видно, что магнитное поле этого проводника складывается с магнитным полем постоянного магнита в зоне выше проводника и вычитается в зоне ниже проводника. Таким образом, более сильное магнитное поле находится выше проводника, а более слабое - ниже (рис. 7.8).
Если изменить направление тока в проводнике на обратное, то форма магнитного поля останется прежней, но его величина будет больше под проводником.

Магнитное поле, ток и движение

Если проводник с током поместить в магнитное поле, то на него будет действовать сила, которая пытается передвинуть проводник из области более сильного поля в область более слабого, как показано на рис. 7.8. Направление этой силы зависит от направления тока, а также от направления магнитного ноля.


Рис. 7.7. Проводник с током в магнитном поле.


Рис. 7.8. Результирующее поле

Величина силы, действующей на проводник с током, определяется как величиной магнитного поля, так и силой гика, протекающего через этот проводник.
Движение проводника, помещенного в магнитное поле, при пропускании через него тока называется принципом двигателя. На этом принципе основана работа электродвигателей, магнитоэлектрических измерительных приборов с подвижной катушкой и других устройств. Если провод ник перемещать в магнитном поле, в нем генерируется ток. Это явление называется принципом генератора. На этом принципе основана работа генераторов постоянного и переменного тока.

До сих пор рассматривалось магнитное поле, связанное только с постоянным электрическим током. В этом случае направление магнитного поля неизменно и определяется направлением постоянного дока. При протекании переменного тока создается переменное магнитное поле. Если отдельную катушку поместить в это переменное поле, то в ней будет индуцироваться (наводиться) ЭДС (напряжение). Или если две отдельные катушки расположить в непосредственной близости друг к другу, как показано на рис. 7.9. и приложить переменное напряжение к одной обмотке (W1), то между выводами второй обмотки (W2) будет возникать новое переменное напряжение (индуцированная ЭДС). Это принцип работы трансформатора .


Рис. 7.9. Индуцированная ЭДС.

В этом видео рассказывается о понятии магнетизма и электромагнетизма:

Магнитное поле электрического тока

Магнитное поле создается не только естественными или искусственными , но и проводником, если по нему проходит электрический ток. Следовательно, существует связь между магнитными и электрическими явлениями.

Убедиться в том, что вокруг проводника, по которому проходит ток, образуется магнитное поле, нетрудно. Над подвижной магнитной стрелке параллельно ей поместите прямолинейный проводник и пропустите через него электрический ток. Стрелка займет положение, перпендикулярное проводнику.

Какие же силы могли заставить повернуться магнитную стрелку? Очевидно, силы магнитного поля, возникшего вокруг проводника. Выключите ток, и магнитная стрелка займет свое обычное положение. Это говорит о том, что с выключением тока исчезло и магнитное поле проводника.

Таким образом, проходящий по проводнику электрический ток создает магнитное поле. Чтобы узнать, в какую сторону отклонится магнитная стрелка, применяют правило правой руки. Если расположить над проводником правую руку ладонью вниз так, чтобы направление тока совпадало с направлением пальцев, то отогнутый большой палец покажет направление отклонения северного полюса магнитной стрелки, помещенной под проводником. Пользуясь этим правилом и зная полярность стрелки, можно определить также направление тока в проводнике.

М агнитное поле прямолинейного проводника имеет форму концентрических кругов. Если расположить над проводником правую руку ладонью вниз так, чтобы ток как бы выходил из пальцев, то отогнутый большой палец укажет на северный полюс магнитной стрелки. Такое поле называется круговым магнитным полем.

Направление силовых линий кругового поля зависит от в проводнике и определяется так называемым правилом «буравчика» . Если буравчик мысленно ввинчивать по направлению тока, то направление вращения его ручки будет совпадать с направлением магнитных силовых линий поля. Применяя это правило, можно узнать направление тока в проводнике, если известно направление силовых линий поля, созданного этим током.

Возвращаясь к опыту с магнитной стрелкой, можно убедиться в том, что она всегда располагается своим северным концом по направлению силовых линий магнитного поля.

Итак, вокруг прямолинейного проводника, по которому проходит электрический ток, возникает магнитное поле. Оно имеет форму концентрических кругов и называется круговым магнитным полем.

Соленоид. Магнитное поле соленоида

Магнитное поле возникает вокруг любого проводника независимо от его формы при условии, что по проводнику проходит электрический ток.

В электротехнике мы имеем дело с , состоящими из ряда витков. Для изучения интересующего нас магнитного поля катушки рассмотрим сначала, какую форму имеет магнитное поле одного витка.

Представим себе виток толстого провода, пронизывающий лист картона и присоединенный к источнику тока. Когда через виток проходит электрический ток, то вокруг каждой отдельной части витка образуется круговое магнитное поле. По правилу «буравчика» нетрудно определить, что магнитные силовые линии внутри витка имеют одинаковое направление (к нам или от нас, в зависимости от направления тока в витке), причем они выходят с одной стороны витка и входят в другую сторону. Ряд таких витков, имеющий форму спирали, представляет собой так называемый соленоид (катушку) .

Вокруг соленоида, при прохождении через него тока, образуется магнитное поле. Оно получается в результате сложения магнитных полей каждого витка и по форме напоминает магнитное поле прямолинейного магнита. Силовые линии магнитного поля соленоида, так же как и в прямолинейном магните, выходят из одного конца соленоида и возвращаются в другой. Внутри соленоида они имеют одинаковое направление. Таким образом, концы соленоида обладают полярностью. Тот конец, из которого выходят силовые линии, является северным полюсом соленоида, а конец, в который силовые линии входят, - его южным полюсом.

Полюса соленоида можно определить по правилу правой руки , но для этого надо знать направление тока в его витках. Если наложить на соленоид правую руку ладонью вниз, так чтобы ток как бы выходил из пальцев, то отогнутый большой палец укажет на северный полюс соленоида . Из этого правила следует, что полярность соленоида зависит от направления тока в нем. В этом нетрудно убедиться практически, поднеся к одному из полюсов соленоида магнитную стрелку и затем изменив направление тока в соленоиде. Стрелка моментально повернется на 180°, т. е. укажет на то, что полюсы соленоида изменились.

Соленоид обладает свойством втягивать в себя легкие же лезные предметы. Если внутрь соленоида поместить стальной брусок, то через некоторое время под действием магнитного поля соленоида брусок намагнитится. Этот способ применяют при изготовлении .

Электромагниты

Представляет собой катушку (соленоид) с помещенным внутрь нее железным сердечником. Формы и размеры электромагнитов разнообразны, однако общее устройство всех их одинаково.

Катушка электромагнита представляет собой каркас, изготовленный чаще всего из прессшпана или фибры и имеющий различные формы в зависимости от назначения электромагнита. На каркас намотана в несколько слоев медная изолированная проволока - обмотка электромагнита. Она имеет различночисло витков и изготовляется из проволоки различного диаметра, в зависимости от назначения электромагнита.

Для предохранения изоляции обмотки от механических повреждений обмотку покрывают одним или несколькими слоями бумаги или каким-либо другим изолирующим материалом. Начало и конец обмотки выводят наружу и присоединяют к выводным клеммам, укрепленным на каркасе, или к гибким проводникам с наконечниками на концах.

Катушка электромагнита насажена на сердечник из мягкого, отожженного железа или сплавов железа с кремнием, никелем и т. д. Такое железо обладает наименьшим остаточным . Сердечники чаще всего делают составными из тонких листов, изолированных друг от друга. Формы сердечников могут быть различными, в зависимости от назначения электромагнита.

Если по обмотке электромагнита пропустить электрический ток, то вокруг обмотки образуется магнитное поле, которое намагничивает сердечник. Так как сердечник сделан из мягкого железа, то он намагнитится мгновенно. Если затем выключить ток, то магнитные свойства сердечника также быстро исчезнут, и он перестанет быть магнитом. Полюсы электромагнита, как и соленоида, определяются по правилу правой руки. Если в обмотке электромагнита изм енить , то в соответствии с этим изменится и полярность электромагнита.

Действие электромагнита подобно действию постоянного магнита. Однако между ними есть большая разница. Постоянный магнит всегда обладает магнитными свойствами, а электромагнит- только тогда, когда по его обмотке проходит электрический ток.

Кроме того, сила притяжения постоянного магнита неизменна, так как неизменен магнитный поток постоянного магнита. Сила же притяжения электромагнита не является величиной постоянной. Один и тот же электромагнитможет обладать различной силой притяжения. Сила притяжения всякого магнита зависит от величины его магнитного потока.

С ила притяжения, а следовательно, и его магнитный поток зависят от величины тока, проходящего через обмотку этого электромагнита. Чем больше ток, тем больше сила притяжения электромагнита, и, наоборот, чем меньше ток в обмотке электромагнита, тем с меньшей силой он притягивает к себе магнитные тела.

Но для различных по своему устройству и размерам электромагнитов сила их притяжения зависит не только от величины тока в обмотке. Если, например, взять два электромагнита одинакового устройства и размеров, но один с небольшим числом витков обмотки, а другой - с гораздо большим, то нетрудно убедиться, что при одном и том же токе сила притяжения последнего будет гораздо больше. Действительно, чем больше число витков обмотки, тем большее при данном токе создается вокруг этой обмотки магнитное поле, так как оно слагается из магнитных полей каждого витка. Значит, магнитный поток электромагнита, а следовательно, и сила его притяжения будут тем больше, чем большее количество витков имеет обмотка.

Есть еще одна причина, влияющая на величину магнитного потока электромагнита. Это - качество его магнитной цепи. Магнитной цепью называется путь, по которому замыкается магнитный поток. Магнитная цепь обладает определенным магнитным сопротивлением . Магнитное сопротивление зависит от магнитной проницаемости среды, через которую проходит магнитный поток. Чем больше магнитная проницаемость этой среды, тем меньше ее магнитное сопротивление.

Так как м агнитная проницаемость ферромагнитных тел (железа, стали) во много раз больше магнитной проницаемости воздуха, поэтому выгоднее делать электромагниты так, чтобы их магнитная цепь не содержала в себе воздушных участков. Произведение силы тока на число витков обмотки электромагнита называется магнитодвижущей силой . Магнитодвижущая сила измеряется числом ампер-витков.

Например, по обмотке электромагнита, имеющего 1200 витков, проходит ток силой 50 ма. М агнитодвижущая сила такого электромагнита равна 0,05 х 1200 = 60 ампер-витков.

Действие магнитодвижущей силы аналогично действию электродвижущей силы в электрической цепи. Подобно тому как ЭДС является причиной возникновения электрического тока, магнитодвижущая сила создает магнитный поток в электромагните. Точно так же, как в электрической цепи с увеличением ЭДС увеличивается ток в цени, так и в магнитной цепи с увеличением магнитодвижущей силы увеличивается магнитный поток.

Действие магнитного сопротивления аналогично действию электрического сопротивления цепи. Как с увеличением сопротивления электрической цепи уменьшается ток, так и в магнитной цепи увеличение магнитного сопротивления вызывает уменьшение магнитного потока.

Зависимость магнитного потока электромагнита от магнитодвижущей силы и его магнитного сопротивления можно выразить формулой, аналогичной формуле закона Ома: магнитодвижущая сила = (магнитный поток / магнитное сопротивление)

Магнитный поток равен магнитодвижущей силе, деленной на магнитное сопротивление.

Число витков обмотки и магнитное сопротивление для каждого электромагнита есть величина постоянная. Поэтому магнитный поток данного электромагнита изменяется только с изменением тока, проходящего по обмотке. Так как сила притяжения электромагнита обусловливается его магнитным потоком, то, чтобы увеличить (или уменьшить) силу притяжения электромагнита, надо соответственно увеличить (или уменьшить) ток в его обмотке.

Поляризованный электромагнит

Поляризованный электромагнит представляет собой соединение постоянного магнита с электромагнитом. Он устроен таким образом. К полюсам постоянного магнита прикреплены так называемые полюсные надставки из мягкого железа. Каждая полюсная надставка служит сердечником электромагнита, на нее насаживается катушка с обмоткой. Обе обмотки соединяются между собой последовательно.

Так как полюсные надставки непосредственно присоединены к полюсам постоянного магнита, то они обладают магнитными свойствами и при отсутствии тока в обмотках; при этом сила притяжения их неизменна и обусловливается магнитным потоком постоянного магнита.

Действие поляризованного электромагнита заключается в том, что при прохождении тока по его обмоткам сила притяжения его полюсов возрастает или уменьшается в зависимости от величины и направления тока в обмотках. На этом свойстве поляризованного электромагнита основано действие и других электротехнических устройств .

Действие магнитного поля на проводник с током

Если в магнитное поле поместить проводник так, чтобы он был расположен перпендикулярно силовым линиям поля, и пропустить по этому проводнику электрический ток, то проводник придет в движение и будет выталкиваться из магнитного поля.

В результате взаимодействия магнитного поля с электрическим током проводник приходит в движение, т. е. электрическая энергия превращается в механическую.

Сила, с которой проводник выталкивается из магнитного поля, зависит от величины магнитного потока магнита, силы тока в проводнике и длины той части проводника, которую пересекают силовые линии поля. Направление действия этой силы, т. е. направление движения проводника, зависит от направления тока в проводнике и определяется по правилу левой руки.

Если держать ладонь левой руки так, чтобы в нее входили магнитные силовые линии поля, а вытянутые четыре пальца были обращены по направлению тока в проводнике, то отогнутый большой палец укажет направление движения проводника . Применяя это правило, надо помнить, что силовые линии поля выходят из северного полюса магнита.

Если к прямолинейному проводнику с электрическим током поднести магнитную стрелку, то она будет стремиться стать перпендикулярно плоскости, проходящей через ось проводника и центр вращения стрелки. Это указывает на то, что на стрелку действуют особые силы, которые называются магнитными силами. Кроме действия на магнитную стрелку, магнитное поле оказывает влияние на движущиеся заряженные частицы и на проводники с током, находящиеся в магнитном поле. В проводниках, движущихся в магнитном поле, или в неподвижных проводниках, находящихся в переменном магнитном поле, возникает индуктивная э. д. с.

В соответствии с вышесказанным мы можем дать следующее определение магнитного поля.

Магнитным полем называется одна из двух сторон электромагнитного поля, возбуждаемая электрическими зарядами движущихся частиц и изменением электрического поля и характеризующаяся силовым воздействием на движущиеся заряженные частицы, а стало быть, и на электрические токи.

Если продеть через картон толстый проводник и пропустить по нему электрический ток, то стальные опилки, насыпанные на картон, расположатся вокруг проводника по концентрическим окружностям, представляющим собой в данном случае так называемые магнитные индукционные линии (фиг. 78). Мы можем передвигать картон вверх или вниз по проводнику, но расположение стальных опилок не изменится. Следовательно, магнитное поле возникает вокруг проводника по всей его длине.

Если на картон поставить маленькие магнитные стрелки, то, меняя направление тока в проводнике, можно увидеть, что магнитные стрелки будут поворачиваться (фиг. 79). Это показывает, что направление магнитных индукционных линий меняется с изменением направления тока в проводнике.

Магнитные индукционные линии вокруг проводника с током обладают следующими свойствами: 1) магнитные индукционные линии прямолинейного проводника имеют форму концентрических окружностей; 2) чем ближе к проводнику, тем гуще располагаются магнитные индукционные линии; 3) магнитная индукция (интенсивность поля) зависит от величины тока в проводнике; 4) направление магнитных индукционных линий зависит от направления тока в проводнике.

Направление магнитных индукционных линий вокруг проводника с током можно определить по «правилу буравчика:». Если буравчик (штопор) с правой резьбой будет двигаться поступательно по направлению тока, то направление вращения ручки будет совпадать с направлением магнитных индукционных линий вокруг проводника (фиг. 81),

Магнитная стрелка, внесенная в поле проводника с током, располагается вдоль магнитных индукционных линий. Поэтому для определения ее расположения можно также воспользоваться «правилом буравчика» (фиг. 82). Магнитное поле есть одно из важнейших проявлений электрического тока и не может быть

Получено независимо и отдельно от тока. Магнитное поле характеризуется вектором магнитной индукции, который имеет, следовательно, определенную величину и определенное направление в пространстве.

Количественное выражение для магнитиой индукции в результате обобщения опытных данных было установлено Био и Саваром (фиг. 83). Измеряя по отклонению магнитной стрелки магнитные поля электрических токов различной величины и формы, оба ученых пришли к выводу, что всякий элемент тока создает на некотором расстоянии от себя магнитное поле, магнитная индукция которого АВ прямо пропорциональна длине А1 этого элемента, величине протекающего тока I, синусу угла а между направлением тока и радиусом-вектором, соединяющим интересующую нас точку поля с данным элементом тока, и обратно пропорциональна квадрату длины этого радиуса-вектора r:

генри (гн)-единица индуктивности; 1 гн= 1 ом сек.

- относительная магнитная проницаемость - безразмерный коэффициент, показывающий, во сколько раз магнитная проницаемость данного материала больше магнитной проницаемости пустоты. Размерность магнитной индукции можно найти по формуле

вольт-секунда иначе называется вебером (вб):

На практике встречается более мелкая единица магнитной индукции-гаусс (гс):

Закон Био и Савара позволяет вычислить магнитную индукцию бесконечно длинного прямолинейного проводника:

где- расстояние от проводника до точки, где определяется

Магнитная индукция. Отношение магнитной индукции к произведению магнитных проницаемостей называется напряженностью магнитного поля и обозначается буквой Н:

Последнее уравнение связывает две магнитные величины: индукцию и напряженность магнитного поля. Найдем размерность Н:

Иногда пользуются другой единицей напряженности - эрстедом (эр):

1 эр = 79,6 a/м = 0,796 а/см.

Напряженность магнитного поля Н, как и магнитная индукция В, является векторной величиной.

Линия, касательная к каждой точке которой совпадает с направлением вектора магнитной индукции, называется линией магнитной индукции или магнитной индукционной линией.

Произведение магнитной индукции на величину площадки, перпендикулярной направлению поля (вектору магнитной индукции), называется потоком вектора магнитной индукции или просто магнитным потоком и обозначается буквой Ф:

Размерность магнитного потока:

т. е. магнитный поток измеряется в вольт-секундах или веберах. Более мелкой единицей магнитного потока является максвелл (мкс):

1 вб = 108 мкс. 1 мкс = 1 гс см2.

Можно показать, как пользоваться законом Ампера, определив магнитное поле вблизи провода. Зададим вопрос: чему равно поле вне длинного прямолинейного провода цилиндрического сечения? Мы сделаем одно предположение, может быть, не столь уж очевидное, но тем не менее правильное: линии поля В идут вокруг провода по окружности. Если мы сделаем такое предположение, то закон Ампера [уравнение (13.16)] говорит нам, какова величина поля. В силу симметрии задачи поле В имеет одинаковую величину во всех точках окружности, концентрической с проводом (фиг. 13.7). Тогда можно легко взять линейный интеграл от B·ds. Он равен просто величине В, умноженной на длину окружности. Если радиус окружности равен r, то

Полный ток через петлю есть просто ток / в проводе, поэтому

Напряженность магнитного поля спадает обратно пропорционально r, расстоянию от оси провода. При желании уравнение (13.17) можно записать в векторной форме. Вспоминая, что В направлено перпендикулярно как I, так и r, имеем

Мы выделили множитель 1/4πε 0 с 2 , потому что он часто появляется. Стоит запомнить, что он равен в точности 10 - 7 (в системе единиц СИ), потому что уравнение вида (13.17) используется для определения единицы тока, ампера. На расстоянии 1 м ток в 1 а создает магнитное поле, равное 2·10 - 7 вебер/м 2 .

Раз ток создает магнитное поле, то он будет действовать с некоторой силой на соседний провод, по которому также проходит ток. В гл. 1 мы описывали простой опыт, показывающий силы между двумя проводами, по которым течет ток. Если провода параллельны, то каждый из них перпендикулярен полю В другого провода; тогда провода будут отталкиваться или притягиваться друг к другу. Когда токи текут в одну сторону, провода притягиваются, когда токи противоположно направлены,— они отталкиваются.

Возьмем другой пример, который тоже можно проанализировать с помощью закона Ампера, если еще добавить кое-какие сведения о характере поля. Пусть имеется длинный провод, свернутый в тугую спираль, сечение которой показано на фиг. 13.8. Такая спираль называется соленоидом. На опыте мы наблюдаем, что когда длина соленоида очень велика по сравнению с диаметром, то поле вне его очень мало по сравнению с полем внутри. Используя только этот факт и закон Ампера, можно найти величину поля внутри.

Поскольку поле остается внутри (и имеет нулевую дивергенцию), его линии должны идти параллельно оси, как показано на фиг. 13.8. Если это так, то мы можем использовать закон Ампера для прямоугольной «кривой» Г на рисунке. Эта кривая проходит расстояние L внутри соленоида, где поле, скажем, равно В о, затем идет под прямым углом к полю и возвращается назад по внешней области, где полем можно пренебречь. Линейный интеграл от В вдоль этой кривой равен в точности В 0 L, и это должно равняться 1/ε 0 с 2 , умноженному на полный ток внутри Г, т. е. на NI (где N - число витков соленоида на длине L ). Мы имеем

Или же, вводя n - число витков на единицу длины соленоида (так что n = N/L ), мы получаем

Что происходит с линиями В, когда они доходят до конца соленоида? По-видимому, они как-то расходятся и возвращаются в соленоид с другого конца (фиг. 13.9). В точности такое же поле наблюдается вне магнитной палочки. Ну а что же такое магнит? Наши уравнения говорят, что поле В возникает от присутствия токов. А мы знаем, что обычные железные бруски (не батареи и не генераторы) тоже создают магнитные поля. Вы могли бы ожидать, что в правой части (13.12) или (16.13) должны были бы быть другие члены, представляющие «плотность намагниченного железа» или какую-нибудь подобную величину. Но такого члена нет. Наша теория говорит, что магнитные эффекты железа возникают от каких-то внутренних токов уже учтенных членом j.

Вещество устроено очень сложно, если рассматривать его с глубокой точки зрения; в этом мы уже убедились когда пытались понять диэлектрики. Чтобы не прерывать нашего изложения, отложим подробное обсуждение внутреннего механизма магнитных материалов типа железа. Пока придется принять, что любой магнетизм возникает за счет токов и что в постоянном магните имеются постоянные внутренние токи. В случае железа эти токи создаются электронами, вращающимися вокруг собственных осей. Каждый электрон имеет такой спин, который соответствует крошечному циркулирующему току. Один электрон, конечно, не дает большого магнитного поля, но в обычном куске вещества содержатся миллиарды и миллиарды электронов. Обычно они вращаются любым образом, так что суммарный эффект исчезает. Удивительно то, что в немногих веществах, подобных железу, большая часть электронов крутится вокруг осей, направленных в одну сторону,— у железа два электрона из каждого атома принимают участие в этом совместном движении. В магните имеется большое число электронов, вращающихся в одном направлении, и, как мы увидим, их суммарный эффект эквивалентен току, циркулирующему по поверхности магнита. (Это очень похоже на то, что мы нашли в диэлектриках,— однородно поляризованный диэлектрик эквивалентен распределению зарядов на его поверхности.) Поэтому не случайно, что магнитная палочка эквивалентна соленоиду.