Конспект открытого урока математики на тему "Деление с остатком " (5-й класс). Арифметические действия


Деление натуральных чисел, особенно многозначных, удобно проводить особым методом, который получил название деление столбиком (в столбик) . Также можно встретить название деление уголком . Сразу отметим, что столбиком можно проводить как деление натуральных чисел без остатка , так и деление натуральных чисел с остатком .

В этой статье мы разберемся, как выполняется деление столбиком. Здесь мы поговорим и о правилах записи, и о всех промежуточных вычислениях. Сначала остановимся на делении столбиком многозначного натурального числа на однозначное число. После этого остановимся на случаях, когда и делимое и делитель являются многозначным натуральными числами. Вся теория этой статьи снабжена характерными примерами деления столбиком натуральных чисел с подробными пояснениями хода решения и иллюстрациями.

Навигация по странице.

Правила записи при делении столбиком

Начнем с изучения правил записи делимого, делителя, всех промежуточных выкладок и результатов при делении натуральных чисел столбиком. Сразу скажем, что письменно выполнять деление столбиком удобнее всего на бумаге с клетчатой разлиновкой – так меньше шансов сбиться с нужной строки и столбца.

Сначала в одной строке слева направо записываются делимое и делитель, после чего между записанными числами изображается символ вида . Например, если делимым является число 6 105 , а делителем – 5 5, то их правильная запись при делении в столбик будет такой:

Посмотрите на следующую схему, иллюстрирующую места для записи делимого, делителя, частного, остатка и промежуточных вычислений при делении столбиком.

Из приведенной схемы видно, что искомое частное (или неполное частное при делении с остатком) будет записано ниже делителя под горизонтальной чертой. А промежуточные вычисления будут вестись ниже делимого, и нужно заранее позаботиться о наличии места на странице. При этом следует руководствоваться правилом: чем больше разница в количестве знаков в записях делимого и делителя, тем больше потребуется места. Например, при делении столбиком натурального числа 614 808 на 51 234 (614 808 – шестизначное число, 51 234 – пятизначное число, разница в количестве знаков в записях равна 6−5=1 ) для промежуточных вычислений потребуется меньше места, чем при делении чисел 8 058 и 4 (здесь разница в количестве знаков равна 4−1=3 ). Для подтверждения своих слов приводим законченные записи деления столбиком этих натуральных чисел:

Теперь можно переходить непосредственно к процессу деления натуральных чисел столбиком.

Деление столбиком натурального числа на однозначное натуральное число, алгоритм деления столбиком

Понятно, что разделить одно однозначное натуральное число на другое достаточно просто, и делить эти числа в столбик нет причин. Однако будет полезно отработать начальные навыки деления столбиком на этих простых примерах.

Пример.

Пусть нам нужно разделить столбиком 8 на 2 .

Решение.

Конечно, мы можем выполнить деление при помощи таблицы умножения , и сразу записать ответ 8:2=4 .

Но нас интересует, как выполнить деление этих чисел столбиком.

Сначала записываем делимое 8 и делитель 2 так, как того требует метод:

Теперь мы начинаем выяснять, сколько раз делитель содержится в делимом. Для этого мы последовательно умножаем делитель на числа 0 , 1 , 2 , 3 , … до того момента, пока в результате не получим число, равное делимому, (либо число большее, чем делимое, если имеет место деление с остатком). Если мы получаем число равное делимому, то сразу записываем его под делимым, а на место частного записываем число, на которое мы умножали делитель. Если же мы получаем число большее, чем делимое, то под делителем записываем число, вычисленное на предпоследнем шаге, а на место неполного частного записываем число, на которое умножался делитель на предпоследнем шаге.

Поехали: 2·0=0 ; 2·1=2 ; 2·2=4 ; 2·3=6 ; 2·4=8 . Мы получили число, равное делимому, поэтому записываем его под делимым, а на место частного записываем число 4 . При этом запись примет следующий вид:

Остался завершающий этап деления однозначных натуральных чисел столбиком. Под числом, записанным под делимым, нужно провести горизонтальную черту, и провести вычитание чисел над этой чертой так, как это делается при вычитании натуральных чисел столбиком . Число, получающееся после вычитания, будет остатком от деления. Если оно равно нулю, то исходные числа разделились без остатка.

В нашем примере получаем

Теперь перед нами законченная запись деления столбиком числа 8 на 2 . Мы видим, что частное 8:2 равно 4 (и остаток равен 0 ).

Ответ:

8:2=4 .

Теперь рассмотрим, как осуществляется деление столбиком однозначных натуральных чисел с остатком.

Пример.

Разделим столбиком 7 на 3 .

Решение.

На начальном этапе запись выглядит так:

Начинаем выяснять, сколько раз в делимом содержится делитель. Будем умножать 3 на 0 , 1 , 2 , 3 и т.д. до того момента, пока не получим число равное или большее, чем делимое 7 . Получаем 3·0=0<7 ; 3·1=3<7 ; 3·2=6<7 ; 3·3=9>7 (при необходимости обращайтесь к статье сравнение натуральных чисел). Под делимым записываем число 6 (оно получено на предпоследнем шаге), а на место неполного частного записываем число 2 (на него проводилось умножение на предпоследнем шаге).

Осталось провести вычитание, и деление столбиком однозначных натуральных чисел 7 и 3 будет завершено.

Таким образом, неполное частное равно 2 , и остаток равен 1 .

Ответ:

7:3=2 (ост. 1) .

Теперь можно переходить к делению столбиком многозначных натуральных чисел на однозначные натуральные числа.

Сейчас мы разберем алгоритм деления столбиком . На каждом его этапе мы будем приводить результаты, получающиеся при делении многозначного натурального числа 140 288 на однозначное натуральное число 4 . Этот пример выбран не случайно, так как при его решении мы столкнемся со всеми возможными нюансами, сможем подробно разобрать их.

    Сначала мы смотрим на первую слева цифру в записи делимого. Если число, определяемое этой цифрой, больше делителя, то в следующем пункте нам предстоит работать с этим числом. Если же это число меньше, чем делитель, то нам нужно добавить к рассмотрению следующую слева цифру в записи делимого, и работать дальше с числом, определяемым двумя рассматриваемыми цифрами. Для удобства выделим в нашей записи число, с которым мы будем работать.

    Первой слева цифрой в записи делимого 140 288 является цифра 1 . Число 1 меньше, чем делитель 4 , поэтому смотрим еще и на следующую слева цифру в записи делимого. При этом видим число 14 , с которым нам и предстоит работать дальше. Выделяем это число в записи делимого.

Следующие пункты со второго по четвертый повторяются циклически, пока деление натуральных чисел столбиком не будет завершено.

    Сейчас нам нужно определить, сколько раз делитель содержится в числе, с которым мы работаем (для удобства обозначим это число как x ). Для этого последовательно умножаем делитель на 0 , 1 , 2 , 3 , … до того момента, пока не получим число x или число больше, чем x . Когда получается число x , то мы записываем его под выделенным числом по правилам записи, используемым при вычитании столбиком натуральных чисел. Число, на которое проводилось умножение, записывается на место частного при первом проходе алгоритма (при последующих проходах 2-4 пунктов алгоритма это число записывается правее уже находящихся там чисел). Когда получается число, которое больше числа x , то под выделенным числом записываем число, полученное на предпоследнем шаге, а на место частного (или правее уже находящихся там чисел) записываем число, на которое проводилось умножение на предпоследнем шаге. (Аналогичные действия мы проводили в двух примерах, разобранных выше).

    Умножаем делитель 4 на числа 0 , 1 , 2 , …, пока не получим число, которое равно 14 или больше 14 . Имеем 4·0=0<14 , 4·1=4<14 , 4·2=8<14 , 4·3=12<14 , 4·4=16>14 . Так как на последнем шаге мы получили число 16 , которое больше, чем 14 , то под выделенным числом записываем число 12 , которое получилось на предпоследнем шаге, а на место частного записываем число 3 , так как в предпоследнем пункте умножение проводилось именно на него.

    На этом этапе из выделенного числа вычитаем столбиком число, расположенное под ним. Под горизонтальной линией записывается результат вычитания. Однако, если результатом вычитания является нуль, то его не нужно записывать (если только вычитание в этом пункте не является самым последним действием, полностью завершающим процесс деления столбиком). Здесь же для своего контроля не лишним будет сравнить результат вычитания с делителем и убедиться, что он меньше делителя. В противном случае где-то была допущена ошибка.

    Нам нужно вычесть столбиком из числа 14 число 12 (для корректности записи нужно не забыть поставить знак «минус» слева от вычитаемых чисел). После завершения этого действия под горизонтальной чертой оказалось число 2 . Теперь проверяем свои вычисления, сравнивая полученное число с делителем. Так как число 2 меньше делителя 4 , то можно спокойно переходить к следующему пункту.

    Теперь под горизонтальной чертой справа от находящихся там цифр (или справа от места, где мы не стали записывать нуль) записываем цифру, расположенную в том же столбце в записи делимого. Если же в записи делимого в этом столбце нет цифр, то деление столбиком на этом заканчивается. После этого выделяем число, образовавшееся под горизонтальной чертой, принимаем его в качестве рабочего числа, и повторяем с ним со 2 по 4 пункты алгоритма.

    Под горизонтальной чертой справа от уже имеющейся там цифры 2 записываем цифру 0 , так как именно цифра 0 находится в записи делимого 140 288 в этом столбце. Таким образом, под горизонтальной чертой образуется число 20 .

    Это число 20 мы выделяем, принимаем в качестве рабочего числа, и повторяем с ним действия второго, третьего и четвертого пунктов алгоритма.

    Умножаем делитель 4 на 0 , 1 , 2 , …, пока не получим число 20 или число, которое больше, чем 20 . Имеем 4·0=0<20 , 4·1=4<20 , 4·2=8<20 , 4·3=12<20 , 4·4=16<20 , 4·5=20 . Так как мы получили число, равное числу 20 , то записываем его под отмеченным числом, а на месте частного, справа от уже имеющегося там числа 3 записываем число 5 (на него производилось умножение).

    Проводим вычитание столбиком. Так как мы вычитаем равные натуральные числа, то в силу свойства вычитания равных натуральных чисел в результате получаем нуль. Нуль мы не записываем (так как это еще не завершающий этап деления столбиком), но запоминаем место, на котором мы его могли записать (для удобства это место мы отметим черным прямоугольником).

    Под горизонтальной линией справа от запомненного места записываем цифру 2 , так как именно она находится в записи делимого 140 288 в этом столбце. Таким образом, под горизонтальной чертой мы имеем число 2 .

    Число 2 принимаем за рабочее число, отмечаем его, и нам еще раз придется выполнить действия из 2-4 пунктов алгоритма.

    Умножаем делитель на 0 , 1 , 2 и так далее, и сравниваем получающиеся числа с отмеченным числом 2 . Имеем 4·0=0<2 , 4·1=4>2 . Следовательно, под отмеченным числом записываем число 0 (оно было получено на предпоследнем шаге), а на месте частного справа от уже имеющегося там числа записываем число 0 (на 0 мы проводили умножение на предпоследнем шаге).

    Выполняем вычитание столбиком, получаем число 2 под горизонтальной чертой. Проверяем себя, сравнивая полученное число с делителем 4 . Так как 2<4 , то можно спокойно двигаться дальше.

    Под горизонтально чертой справа от числа 2 дописываем цифру 8 (так как она находится в этом столбце в записи делимого 140 288 ). Таким образом, под горизонтальной линией оказывается число 28 .

    Принимаем это число в качестве рабочего, отмечаем его, и повторяем действия 2-4 пунктов.

Здесь никаких проблем возникнуть не должно, если Вы были внимательны до настоящего момента. Проделав все необходимые действия, получается следующий результат.

Осталось последний раз провести действия из пунктов 2 , 3 , 4 (предоставляем это Вам), после чего получится законченная картина деления натуральных чисел 140 288 и 4 в столбик:

Обратите внимание, что в самой нижней строчке записано число 0 . Если бы это был не последний шаг деления столбиком (то есть, если бы в записи делимого в столбцах справа оставались цифры), то этот нуль мы бы не записывали.

Таким образом, посмотрев на законченную запись деления многозначного натурального числа 140 288 на однозначное натуральное число 4 , мы видим, что частным является число 35 072 , (а остаток от деления равен нулю, он находится в самой нижней строке).

Конечно же, при делении натуральных чисел столбиком Вы не будете настолько подробно описывать все свои действия. Ваши решения будут выглядеть примерно так, как в следующих примерах.

Пример.

Выполните деление в столбик, если делимое равно 7 136 , а делителем является однозначное натуральное число 9 .

Решение.

На первом шаге алгоритма деления натуральных чисел столбиком мы получим запись вида

После выполнения действий из второго, третьего и четвертого пунктов алгоритма запись деления столбиком примет вид

Повторив цикл, будем иметь

Еще один проход дет нам законченную картину деления столбиком натуральных чисел 7 136 и 9

Таким образом, неполное частное равно 792 , а остаток от деления равен 8 .

Ответ:

7 136:9=792 (ост. 8) .

А этот пример демонстрирует, как должно выглядеть деление в столбик.

Пример.

Разделите натуральное число 7 042 035 на однозначное натуральное число 7 .

Решение.

Удобнее всего выполнить деление столбиком.

Ответ:

7 042 035:7=1 006 005 .

Деление столбиком многозначных натуральных чисел

Поспешим Вас обрадовать: если Вы хорошо усвоили алгоритм деления столбиком из предыдущего пункта этой статьи, то Вы уже почти умеете выполнять деление столбиком многозначных натуральных чисел . Это действительно так, так как со 2 по 4 этапы алгоритма остаются неизменными, а в первом пункте появляются лишь незначительные изменения.

На первом этапе деления в столбик многозначных натуральных чисел нужно смотреть не на первую слева цифру в записи делимого, а на такое их количество, сколько знаков содержится в записи делителя. Если число, определяемое этими цифрами, больше делителя, то в следующем пункте нам предстоит работать с этим числом. Если же это число меньше, чем делитель, то нам нужно добавить к рассмотрению следующую слева цифру в записи делимого. После этого выполняются действия, указанные во 2 , 3 и 4 пункте алгоритма до получения конечного результата.

Осталось лишь посмотреть применение алгоритма деления столбиком многозначных натуральных чисел на практике при решении примеров.

Пример.

Выполним деление столбиком многозначных натуральных чисел 5 562 и 206 .

Решение.

Так как в записи делителя 206 участвуют 3 знака, то смотрим на первые 3 цифры слева в записи делимого 5 562 . Эти цифры соответствуют числу 556 . Так как 556 больше, чем делитель 206 , то число 556 принимаем в качестве рабочего, выделяем его, и переходим к следующему этапу алгоритма.

Теперь умножаем делитель 206 на числа 0 , 1 , 2 , 3 , … до того момента, пока не получим число, которое либо равно 556 , либо больше, чем 556 . Имеем (если умножение выполняется сложно, то лучше выполнять умножение натуральных чисел столбиком): 206·0=0<556 , 206·1=206<556 , 206·2=412<556 , 206·3=618>556 . Так как мы получили число, которое больше числа 556 , то под выделенным числом записываем число 412 (оно было получено на предпоследнем шаге), а на место частного записываем число 2 (так как на него проводилось умножение на предпоследнем шаге). Запись деления столбиком принимает следующий вид:

Выполняем вычитание столбиком. Получаем разность 144 , это число меньше делителя, поэтому можно спокойно продолжать выполнение требуемых действий.

Под горизонтальной линией справа от имеющегося там числа записываем цифру 2 , так как она находится в записи делимого 5 562 в этом столбце:

Теперь мы работаем с числом 1 442 , выделяем его, и проходим пункты со второго по четвертый еще раз.

Умножаем делитель 206 на 0 , 1 , 2 , 3 , … до получения числа 1 442 или числа, которое больше, чем 1 442 . Поехали: 206·0=0<1 442 , 206·1=206<1 442 , 206·2=412<1 332 , 206·3=618<1 442 , 206·4=824<1 442 , 206·5=1 030<1 442 , 206·6=1 236<1 442 , 206·7=1 442 . Таким образом, под отмеченным числом записываем 1 442 , а на месте частного правее уже имеющегося там числа записываем 7 :

Проводим вычитание столбиком, получаем нуль, но сразу его не записываем, а лишь запоминаем его позицию, потому что не знаем, завершается ли на этом деление, или придется еще раз повторять шаги алгоритма:

Теперь мы видим, что под горизонтальную черту правее запомненной позиции мы не можем записать никакого числа, так как в записи делимого в этом столбце нет цифр. Следовательно, на этом деление столбиком закончено, и мы завершаем запись:

  • Математика. Любые учебники для 1, 2, 3, 4 классов общеобразовательных учреждений.
  • Математика. Любые учебники для 5 классов общеобразовательных учреждений.

Следует отметить, что комбинаторика является самостоятельным разделом высшей математики (а не частью тервера) и по данной дисциплине написаны увесистые учебники, содержание которых, порой, ничуть не легче абстрактной алгебры. Однако нам будет достаточно небольшой доли теоретических знаний, и в данной статье я постараюсь в доступной форме разобрать основы темы с типовыми комбинаторными задачами. А многие из вас мне помогут;-)

Чем будем заниматься? В узком смысле комбинаторика – это подсчёт различных комбинаций, которые можно составить из некоторого множества дискретных объектов. Под объектами понимаются какие-либо обособленные предметы или живые существа – люди, звери, грибы, растения, насекомые и т.д. При этом комбинаторику совершенно не волнует, что множество состоит из тарелки манной каши, паяльника и болотной лягушки. Принципиально важно, что эти объекты поддаются перечислению – их три (дискретность) и существенно то, что среди них нет одинаковых.

С множеством разобрались, теперь о комбинациях. Самыми распространёнными видами комбинаций являются перестановки объектов, их выборка из множества (сочетание) и распределение (размещение). Давайте прямо сейчас посмотрим, как это происходит:

Перестановки, сочетания и размещения без повторений

Не пугайтесь малопонятных терминов, тем более, некоторые из них действительно не очень удачны. Начнём с хвоста заголовка – что значит «без повторений »? Это значит, что в данном параграфе будут рассматриваться множества, которые состоят из различных объектов. Например, … нет, кашу с паяльником и лягушкой предлагать не буду, лучше что-нибудь повкуснее =) Представьте, что перед вами на столе материализовалось яблоко, груша и банан (при наличии таковых ситуацию можно смоделировать и реально). Выкладываем фрукты слева направо в следующем порядке:

яблоко / груша / банан

Вопрос первый : сколькими способами их можно переставить?

Одна комбинация уже записана выше и с остальными проблем не возникает:

яблоко / банан / груша
груша / яблоко / банан
груша / банан / яблоко
банан / яблоко / груша
банан / груша / яблоко

Итого : 6 комбинаций или 6 перестановок .

Хорошо, здесь не составило особого труда перечислить все возможные случаи, но как быть, если предметов больше? Уже с четырьмя различными фруктами количество комбинаций значительно возрастёт!

Пожалуйста, откройте справочный материал (методичку удобно распечатать) и в пункте № 2 найдите формулу количества перестановок.

Никаких мучений – 3 объекта можно переставить способами.

Вопрос второй : сколькими способами можно выбрать а) один фрукт, б) два фрукта, в) три фрукта, г) хотя бы один фрукт?

Зачем выбирать? Так нагуляли же аппетит в предыдущем пункте – для того, чтобы съесть! =)

а) Один фрукт можно выбрать, очевидно, тремя способами – взять либо яблоко, либо грушу, либо банан. Формальный подсчёт проводится по формуле количества сочетаний :

Запись в данном случае следует понимать так: «сколькими способами можно выбрать 1 фрукт из трёх?»

б) Перечислим все возможные сочетания двух фруктов:

яблоко и груша;
яблоко и банан;
груша и банан.

Количество комбинаций легко проверить по той же формуле:

Запись понимается аналогично: «сколькими способами можно выбрать 2 фрукта из трёх?».

в) И, наконец, три фрукта можно выбрать единственным способом:

Кстати, формула количества сочетаний сохраняет смысл и для пустой выборки:
способом можно выбрать ни одного фрукта – собственно, ничего не взять и всё.

г) Сколькими способами можно взять хотя бы один фрукт? Условие «хотя бы один» подразумевает, что нас устраивает 1 фрукт (любой) или 2 любых фрукта или все 3 фрукта:
способами можно выбрать хотя бы один фрукт.

Читатели, внимательно изучившие вводный урок по теории вероятностей , уже кое о чём догадались. Но о смысле знака «плюс» позже.

Для ответа на следующий вопрос мне требуется два добровольца… …Ну что же, раз никто не хочет, тогда буду вызывать к доске =)

Вопрос третий : сколькими способами можно раздать по одному фрукту Даше и Наташе?

Для того чтобы раздать два фрукта, сначала нужно их выбрать. Согласно пункту «бэ» предыдущего вопроса, сделать это можно способами, перепишу их заново:

яблоко и груша;
яблоко и банан;
груша и банан.

Но комбинаций сейчас будет в два раза больше. Рассмотрим, например, первую пару фруктов:
яблоком можно угостить Дашу, а грушей – Наташу;
либо наоборот – груша достанется Даше, а яблоко – Наташе.

И такая перестановка возможна для каждой пары фруктов.

Рассмотрим ту же студенческую группу, которая пошла на танцы. Сколькими способами можно составить пару из юноши и девушки?

Способами можно выбрать 1 юношу;
способами можно выбрать 1 девушку.

Таким образом, одного юношу и одну девушку можно выбрать: способами.

Когда из каждого множества выбирается по 1 объекту, то справедлив следующий принцип подсчёта комбинаций: «каждый объект из одного множества может составить пару с каждым объектом другого множества».

То есть, Олег может пригласить на танец любую из 13 девушек, Евгений – тоже любую из тринадцати, и аналогичный выбор есть у остальных молодых людей. Итого: возможных пар.

Следует отметить, что в данном примере не имеет значения «история» образования пары; однако если принять во внимание инициативу, то количество комбинаций нужно удвоить, поскольку каждая из 13 девушек тоже может пригласить на танец любого юношу. Всё зависит от условия той или иной задачи!

Похожий принцип справедлив и для более сложных комбинаций, например: сколькими способами можно выбрать двух юношей и двух девушек для участия в сценке КВН?

Союз И недвусмысленно намекает, что комбинации необходимо перемножить:

Возможных групп артистов.

Иными словами, каждая пара юношей (45 уникальных пар) может выступать с любой парой девушек (78 уникальных пар). А если рассмотреть распределение ролей между участниками, то комбинаций будет ещё больше. …Очень хочется, но всё-таки воздержусь от продолжения, чтобы не привить вам отвращение к студенческой жизни =).

Правило умножения комбинаций распространяется и на бОльшее количество множителей:

Задача 8

Сколько существует трёхзначных чисел, которые делятся на 5?

Решение : для наглядности обозначим данное число тремя звёздочками: ***

В разряд сотен можно записать любую из цифр (1, 2, 3, 4, 5, 6, 7, 8 или 9). Ноль не годится, так как в этом случае число перестаёт быть трёхзначным.

А вот в разряд десятков («посерединке») можно выбрать любую из 10 цифр: .

По условию, число должно делиться на 5. Число делится на 5, если оно заканчивается на 5 либо на 0. Таким образом, в младшем разряде нас устраивают 2 цифры.

Итого, существует : трёхзначных чисел, которые делятся на 5.

При этом произведение расшифровывается так: «9 способами можно выбрать цифру в разряд сотен и 10 способами выбрать цифру в разряд десятков и 2 способами в разряд единиц »

Или ещё проще: «каждая из 9 цифр в разряде сотен комбинируется с каждой из 10 цифр разряда десятков и с каждой из двух цифр в разряде единиц ».

Ответ : 180

А теперь…

Да, чуть не забыл об обещанном комментарии к задаче № 5, в которой Боре, Диме и Володе можно сдать по одной карте способами. Умножение здесь имеет тот же смысл: способами можно извлечь 3 карты из колоды И в каждой выборке переставить их способами.

А теперь задача для самостоятельного решения… сейчас придумаю что-нибудь поинтереснее, …пусть будет про ту же русскую версию блэкджека:

Задача 9

Сколько существует выигрышных комбинаций из 2 карт при игре в «очко»?

Для тех, кто не знает: выигрывает комбинация 10 + ТУЗ (11 очков) = 21 очко и, давайте будем считать выигрышной комбинацию из двух тузов.

(порядок карт в любой паре не имеет значения)

Краткое решение и ответ в конце урока.

Кстати, не надо считать пример примитивным. Блэкджек – это чуть ли не единственная игра, для которой существует математически обоснованный алгоритм, позволяющий выигрывать у казино. Желающие могут легко найти массу информации об оптимальной стратегии и тактике. Правда, такие мастера довольно быстро попадают в чёрный список всех заведений =)

Пришло время закрепить пройденный материал парой солидных задач:

Задача 10

У Васи дома живут 4 кота.

а) сколькими способами можно рассадить котов по углам комнаты?
б) сколькими способами можно отпустить гулять котов?
в) сколькими способами Вася может взять на руки двух котов (одного на левую, другого – на правую)?

Решаем : во-первых, вновь следует обратить внимание на то, что в задаче речь идёт о разных объектах (даже если коты – однояйцовые близнецы). Это очень важное условие!

а) Молчание котов. Данной экзекуции подвергаются сразу все коты
+ важно их расположение, поэтому здесь имеют место перестановки:
способами можно рассадить котов по углам комнаты.

Повторюсь, что при перестановках имеет значение лишь количество различных объектов и их взаимное расположение. В зависимости от настроения Вася может рассаживать животных полукругом на диване, в ряд на подоконнике и т.д. – перестановок во всех случаях будет 24. Желающие могут для удобства представить, что коты разноцветные (например, белый, чёрный, рыжий и полосатый) и перечислить все возможные комбинации.

б) Сколькими способами можно отпустить гулять котов?

Предполагается, что коты ходят гулять только через дверь, при этом вопрос подразумевает безразличие по поводу количества животных – на прогулку могут выйти 1, 2, 3 или все 4 кота.

Считаем все возможные комбинации:

Способами можно отпустить гулять одного кота (любого из четырёх);
способами можно отпустить гулять двух котов (варианты перечислите самостоятельно);
способами можно отпустить гулять трёх котов (какой-то один из четырёх сидит дома);
способом можно выпустить всех котов.

Наверное, вы догадались, что полученные значения следует просуммировать:
способами можно отпустить гулять котов.

Энтузиастам предлагаю усложнённую версию задачи – когда любой кот в любой выборке случайным образом может выйти на улицу, как через дверь, так и через окно 10 этажа. Комбинаций заметно прибавится!

в) Сколькими способами Вася может взять на руки двух котов?

Ситуация предполагает не только выбор 2 животных, но и их размещение по рукам:
способами можно взять на руки 2 котов.

Второй вариант решения: способами можно выбрать двух котов и способами посадить каждую пару на руки:

Ответ : а) 24, б) 15, в) 12

Ну и для очистки совести что-нибудь поконкретнее на умножение комбинаций…. Пусть у Васи дополнительно живёт 5 кошек =) Сколькими способами можно отпустить гулять 2 котов и 1 кошку?

То есть, с каждой парой котов можно выпустить каждую кошку.

Ещё один баян для самостоятельного решения:

Задача 11

В лифт 12-этажного дома сели 3 пассажира. Каждый независимо от других с одинаковой вероятностью может выйти на любом (начиная со 2-го) этаже. Сколькими способами:

1) пассажиры могут выйти на одном и том же этаже (порядок выхода не имеет значения) ;
2) два человека могут выйти на одном этаже, а третий – на другом;
3) люди могут выйти на разных этажах;
4) пассажиры могут выйти из лифта?

И тут часто переспрашивают, уточняю: если 2 или 3 человека выходят на одном этаже, то очерёдность выхода не имеет значения. ДУМАЙТЕ, используйте формулы и правила сложения/умножения комбинаций. В случае затруднений пассажирам полезно дать имена и порассуждать, в каких комбинациях они могут выйти из лифта. Не нужно огорчаться, если что-то не получится, так, например, пункт № 2 достаточно коварен, впрочем, один из читателей отыскал простое решение, и я в очередной раз выражаю благодарность за ваши письма!

Полное решение с подробными комментариями в конце урока.

Заключительный параграф посвящён комбинациям, которые тоже встречаются достаточно часто – по моей субъективной оценке, примерно в 20-30% комбинаторных задач:

Перестановки, сочетания и размещения с повторениями

Перечисленные виды комбинаций законспектированы в пункте № 5 справочного материала Основные формулы комбинаторики , однако некоторые из них по первому прочтению могут быть не очень понятными. В этом случае сначала целесообразно ознакомиться с практическими примерами, и только потом осмысливать общую формулировку. Поехали:

Перестановки с повторениями

В перестановках с повторениями, как и в «обычных» перестановках, участвует сразу всё множество объектов , но есть одно но: в данном множестве один или бОльшее количество элементов (объектов) повторяются. Встречайте очередной стандарт:

Задача 12

Сколько различных буквосочетаний можно получить перестановкой карточек со следующими буквами: К, О, Л, О, К, О, Л, Ь, Ч, И, К?

Решение : в том случае, если бы все буквы были различны, то следовало бы применить тривиальную формулу , однако совершенно понятно, что для предложенного набора карточек некоторые манипуляции будут срабатывать «вхолостую», так, например, если поменять местами любые две карточки с буквами «К» в любом слове, то получится то же самое слово. Причём, физически карточки могут сильно отличаться: одна быть круглой с напечатанной буквой «К», другая – квадратной с нарисованной буквой «К». Но по смыслу задачи даже такие карточки считаются одинаковыми , поскольку в условии спрашивается о буквосочетаниях.

Всё предельно просто – всего: 11 карточек, среди которых буква:

К – повторяется 3 раза;
О – повторяется 3 раза;
Л – повторяется 2 раза;
Ь – повторяется 1 раз;
Ч – повторяется 1 раз;
И – повторяется 1 раз.

Проверка: 3 + 3 + 2 + 1 + 1 + 1 = 11, что и требовалось проверить.

По формуле количества перестановок с повторениями :
различных буквосочетаний можно получить. Больше полумиллиона!

Для быстрого расчёта большого факториального значения удобно использовать стандартную функцию Экселя: забиваем в любую ячейку =ФАКТР(11) и жмём Enter .

На практике вполне допустимо не записывать общую формулу и, кроме того, опускать единичные факториалы:

Но предварительные комментарии о повторяющихся буквах обязательны!

Ответ : 554400

Другой типовой пример перестановок с повторениями встречается в задаче о расстановке шахматных фигур, которую можно найти на складе готовых решений в соответствующей pdf-ке. А для самостоятельного решения я придумал менее шаблонное задание:

Задача 13

Алексей занимается спортом, причём 4 дня в неделю – лёгкой атлетикой, 2 дня – силовыми упражнениями и 1 день отдыхает. Сколькими способами он может составить себе расписание занятий на неделю?

Формула здесь не годится, поскольку учитывает совпадающие перестановки (например, когда меняются местами силовые упражнения в среду с силовыми упражнениями в четверг). И опять – по факту те же 2 силовые тренировки могут сильно отличаться друг от друга, но по контексту задачи (с точки зрения расписания) они считаются одинаковыми элементами.

Двухстрочное решение и ответ в конце урока.

Сочетания с повторениями

Характерная особенность этого вида комбинаций состоит в том, что выборка проводится из нескольких групп, каждая из которых состоит из одинаковых объектов.

Сегодня все хорошо потрудились, поэтому настало время подкрепиться:

Задача 14

В студенческой столовой продают сосиски в тесте, ватрушки и пончики. Сколькими способами можно приобрести пять пирожков?

Решение : сразу обратите внимание на типичный критерий сочетаний с повторениями – по условию на выбор предложено не множество объектов как таковое, а различные виды объектов; при этом предполагается, что в продаже есть не менее пяти хот-догов, 5 ватрушек и 5 пончиков. Пирожки в каждой группе, разумеется, отличаются – ибо абсолютно идентичные пончики можно смоделировать разве что на компьютере =) Однако физические характеристики пирожков по смыслу задачи не существенны, и хот-доги / ватрушки / пончики в своих группах считаются одинаковыми.

Что может быть в выборке? Прежде всего, следует отметить, что в выборке обязательно будут одинаковые пирожки (т.к. выбираем 5 штук, а на выбор предложено 3 вида). Варианты тут на любой вкус: 5 хот-догов, 5 ватрушек, 5 пончиков, 3 хот-дога + 2 ватрушки, 1 хот-дог + 2 + ватрушки + 2 пончика и т.д.

Как и при «обычных» сочетаниях, порядок выбора и размещение пирожков в выборке не имеет значения – просто выбрали 5 штук и всё.

Используем формулу количества сочетаний с повторениями:
способом можно приобрести 5 пирожков.

Приятного аппетита!

Ответ : 21

Какой вывод можно сделать из многих комбинаторных задач?

Порой, самое трудное – это разобраться в условии.

Аналогичный пример для самостоятельного решения:

Задача 15

В кошельке находится достаточно большое количество 1-, 2-, 5- и 10-рублёвых монет. Сколькими способами можно извлечь три монеты из кошелька?

В целях самоконтроля ответьте на пару простых вопросов:

1) Могут ли в выборке все монеты быть разными?
2) Назовите самую «дешевую» и самую «дорогую» комбинацию монет.

Решение и ответы в конце урока.

Из моего личного опыта, могу сказать, что сочетания с повторениями – наиболее редкий гость на практике, чего не скажешь о следующем виде комбинаций:

Размещения с повторениями

Из множества, состоящего из элементов, выбирается элементов, при этом важен порядок элементов в каждой выборке. И всё бы было ничего, но довольно неожиданный прикол заключается в том, что любой объект исходного множества мы можем выбирать сколько угодно раз. Образно говоря, от «множества не убудет».

Когда так бывает? Типовым примером является кодовый замок с несколькими дисками, но по причине развития технологий актуальнее рассмотреть его цифрового потомка:

Задача 16

Сколько существует четырёхзначных пин-кодов?

Решение : на самом деле для разруливания задачи достаточно знаний правил комбинаторики: способами можно выбрать первую цифру пин-кода и способами – вторую цифру пин-кода и столькими же способами – третью и столькими же – четвёртую. Таким образом, по правилу умножения комбинаций, четырёхзначный пин-код можно составить: способами.

А теперь с помощью формулы. По условию нам предложен набор из цифр, из которого выбираются цифры и располагаются в определенном порядке , при этом цифры в выборке могут повторяться (т.е. любой цифрой исходного набора можно пользоваться произвольное количество раз) . По формуле количества размещений с повторениями:

Ответ : 10000

Что тут приходит на ум… …если банкомат «съедает» карточку после третьей неудачной попытки ввода пин-кода, то шансы подобрать его наугад весьма призрачны.

И кто сказал, что в комбинаторике нет никакого практического смысла? Познавательная задача для всех читателей сайт:

Задача 17

Согласно государственному стандарту, автомобильный номерной знак состоит из 3 цифр и 3 букв. При этом недопустим номер с тремя нулями, а буквы выбираются из набора А, В, Е, К, М, Н, О, Р, С, Т, У, Х (используются только те буквы кириллицы, написание которых совпадает с латинскими буквами) .

Сколько различных номерных знаков можно составить для региона?

Не так их, кстати, и много. В крупных регионах такого количества не хватает, и поэтому для них существуют по несколько кодов к надписи RUS.

Решение и ответ в конце урока. Не забываем использовать правила комбинаторики;-) …Хотел похвастаться эксклюзивом, да оказалось не эксклюзивом =) Заглянул в Википедию – там есть расчёты, правда, без комментариев. Хотя в учебных целях, наверное, мало кто прорешивал.

Наше увлекательное занятие подошло к концу, и напоследок я хочу сказать, что вы не зря потратили время – по той причине, что формулы комбинаторики находят ещё одно насущное практическое применение: они встречаются в различных задачах по теории вероятностей ,
и в задачах на классическое определение вероятности – особенно часто =)

Всем спасибо за активное участие и до скорых встреч!

Решения и ответы :

Задача 2: Решение : найдём количество всех возможных перестановок 4 карточек:

Когда карточка с нулём располагается на 1-м месте, то число становится трёхзначным, поэтому данные комбинации следует исключить. Пусть ноль находится на 1-м месте, тогда оставшиеся 3 цифры в младших разрядах можно переставить способами.

Примечание : т.к. карточек немного, то здесь несложно перечислить все такие варианты:
0579
0597
0759
0795
0957
0975

Таким образом, из предложенного набора можно составить:
24 – 6 = 18 четырёхзначных чисел
Ответ : 18

З.Ы. Никогда не думал, что эти задачи будут предлагать первоклассникам, один из которых заметил, что карточку «9» можно использовать как «6», и поэтому количество комбинаций нужно удвоить. Но в условии всё же заявлена конкретная цифра и от удвоения лучше воздержаться.

Задача 4: Решение : способами можно выбрать 3 карты из 36.
Ответ : 7140

Задача 6: Решение : способами.
Другой вариант решения : способами можно выбрать двух человек из группы и способами распределить должности в каждой выборке. Таким образом, старосту и его заместителя можно выбрать способами. Третий вариант решения , нашёл другой читатель сайта. Через комбинаторное произведение:

(11 способами можно выйти один пассажир и для каждого из этих вариантов – 10 способами может выйти другой пассажир и для каждой возможной комбинации их выхода – 9 способами может выйти третий пассажир)

4) Способ первый : суммируем комбинации первых трёх пунктов:
способом пассажиры могут выйти из лифта.

Способ второй : в общем случае он более рационален, более того, позволяет обойтись без результатов предыдущих пунктов. Рассуждения таковы: способами может выйти 1-й пассажир из лифта и способами может выйти 2-й пассажир и
2) Самый «дешёвый» набор содержит 3 рублёвые монеты, а самый «дорогой» – 3 десятирублёвые.

Задача 17: Решение : способами можно составить цифровую комбинацию автомобильного номера, при этом одну из них (000) следует исключить: .
способами можно составить буквенную комбинацию автомобильного номера.
По правилу умножения комбинаций, всего можно составить:
автомобильных номера
(каждая цифровая комбинация сочетается с каждой буквенной комбинацией).
Ответ : 1726272

Разделы: Математика

Класс: 6

Цели урока :
1. Образовательные: повторение, обобщение и проверка знаний по теме: «Делимость натуральных чисел »; выработка основных навыков.
2. Развивающие: развить внимание учащихся, усидчивость, настойчивость, логическое мышление, математическую речь.
3. Воспитательные: посредством урока воспитывать внимательное отношение друг к другу, прививать умение слушать товарищей, взаимовыручке, самостоятельность.
Задачи урока:
Формировать умения применять понятие делителей и кратных; развивать мышление и элементы творческой деятельности; применять признаки делимости в простейших ситуациях; нахождение НОД и НОК чисел, развивать наблюдательность и логическое мышление.
Тип урока – комбинированный.
Форма урока – урок с компьютерной поддержкой.
Оборудование:
1. Доска и мел.
2. Компьютер и проектор.
3. Бумажный вариант всех заданий.

Ход урока.

Числа правят миром.
Пифагор.
1. Организационный момент.
2. Сообщение цели урока.
3. Актуализация опорных знаний.
1. Что называется делителем числа а ?
2. Что называется кратным числа а ?
3. Существует ли наибольшее кратное число?
4. Сформулировать признаки делимости?
5. Какие числа называются простыми, а какие составными?
(Сообщение учащихся о Пифагоре, о Эратосфене, о Евклиде)

Исторические сведения:

Евклид – древнегреческий ученый (365 – 300 г до н.э). О жизни этого великого ученого известно очень мало. Он жил и трудился в Александрии, городе, основанном Александром Македонским. С именем Евклида связано много легенд. Одна из них рассказывает, что царь Птолемей спросил Евклида: « Нет ли более короткого пути к познанию геометрии?», - на что ученый ответил: « Нет царской дороги в геометрию!». Евклид много занимался теорией чисел: именно он доказал, что простых чисел бесконечно много. Алгоритм нахождения НОД двух чисел, называется алгоритмом Евклида.
Древнегреческий математик Евклид в свой книге « Начала», которая была на протяжении двух тысяч лет основным учебником математики, доказал, что простых чисел бесконечно много, т.е. за каждым простым числом есть еще более простое число.
Пифагор (6 век до н.э.) и его ученики изучили вопрос о делимости чисел. Число равное сумме всех его делителей (без самого числа) , они назвали совершенным числом.
Например число 6 (6 = 1 + 2 + 3) , 28 (28 = 1 + 2 + 4 + 7 + 14) совершенные.
Следующие совершенные числа 496, 8128, 33550336
Пифагорейцы знали только первые три совершенных числа. Четвертое 8128 стало известно в І веке до н.э.
Пятое число 33550336 было найдено в 15 веке.
К 1983 г. Было известно уже 27 совершенных чисел. Но до сих пор ученые не знают, есть ли нечетное совершенное число, есть ли самое большое совершенное число. Интерес древних математиков к простым числам связан с тем, что любое натуральное число, больше 1 , либо простое число, либо может быть составлено в виде произведения простых чисел: 14 = 2∙ 7, 16 = 2∙2 ∙2∙2
Возникает вопрос: существует ли последнее (самое большое) простое число?

Задача: Задумано простое число. Следующее за ним натуральное число тоже простое. О каких числах идет речь?
Ответ: 2,3.
6. Какие числа называются взаимно простыми?
7. Объяснить, как найти НОД (НОК) двух чисел.
(Сообщение учащегося о нахождении НОД двух чисел)
Однажды числа 24 и 60 поспорили о том, как им найти НОД. Число 24 утверждало, что сначала надо найти среди всех делителей общие числа, а потом выбрать из них наибольшее число. А число 60 возражало:
- Ну что ты! Мне такой способ не нравится. У меня слишком много делителей, и при их перечислении я могу пропустить какой-нибудь. А вдруг он окажется наибольшим? Нет мне такой способ не нравится. И решили они обратиться за помощью к магистру ДЕЛЕНЧЕСКИХ наук. И магистр им ответил:
- Да 24, твой способ нахождения НОД чисел можно использовать, но это не всегда удобно. А можно найти НОД по-другому.
Нужно 24 и 60 разложить на простые множители.

24 2
12 2
6 2
3 3
1
60 2
30 2
15 3
5 5
1

24 = 2³ ∙ 3
60 = 2² ∙ 3 ∙ 5
Нужно взять общие делители чисел с меньшим показателем степени.
НОД (24;60) = 2² ∙ 3 = 12.

А чтобы найти НОК двух чисел нужно:

  1. Разложить на простые множители;
  2. Выписать все простые множители, которые входят в первое число и во второе число с наибольшим показателем степени.

Значит:
24 = 2³ ∙ 3 60 = 2² ∙ 3 ∙ 5 НОК (24;60) = 2³∙ 3 ∙ 5 = 120.

Составитель преподаватель кафедры высшей математики Ищанов Т.Р.

Занятие №1. Элементы комбинаторики

Теория.
Правило умножения: если из некоторого конечного множества первый объект (элемент ) можно выбрать способами, а второй объект (элемент ) - способами, то оба объекта ( и ) в указанном порядке можно выбрать способами.
Правило сложения: если некоторый объект можно выбрать способами, а объект можно выбрать способами, причем первые и вторые способы не пересекаются, то любой из объектов ( или ) можно выбрать способами.

Практический материал.
1.(6.1.44. Л) Сколько различных трехзначных чисел можно составить из цифр 0, 1, 2, 3, 4 если:
а) цифры не могут повторяться;
б) цифры могут повториться;
в) числа должны быть четными (цифры могут повторяться);
г) число должно делиться на 5 (цифры не могут повторяться)
(Ответ: а) 48 б) 100 в) 60 г) 12)

2. (6.1.2.) Сколько чисел, содержащих не менее трех различных цифр, можно составить из цифр 3, 4, 5, 6, 7? (Ответ: 300.)

3. (6.1.39) Сколько можно составить четырехзначных чисел так, чтобы любые две соседние цифры были различными? (Ответ: 6561)

Теория. Пусть дано множество, состоящее из n различных элементов.
Размещением из n элементов по k элементов (0?k?n) называется любое упорядоченное подмножество данного множества, содержащее k элементов. Два размещения различны, если они отличаются друг от друга либо составом элементов, либо порядком их следования.
Число размещений из n элементов по k обозначаются символом и вычисляется по формуле:

где n!=1·2·3·…·n ,причем 1!=1,0!=1.

Практический материал.
4. (6.1.9 Л.) Составить различные размещения по два элемента из элементов множества A={3,4,5} и подсчитать их число. (Ответ: 6)

5. (6.1.3 Л) Сколькими способами могут быть распределены три призовых места среди 16 соревнующихся? (Ответ: 3360)

6. (6.1.11. Л) Сколько имеется пятизначных чисел, все цифры у которых различны? Указание: учесть тот факт, что цифры вида 02345, 09782 и т.д. не считаем пятизначными. (Ответ: 27 216)

7. (6.1.12.Л.) Сколькими способами можно составить трехцветный полосатый флаг (три горизонтальных полосы), если имеется материя 5 различных цветов? (Ответ: 60.)

Теория. Сочетанием из n элементов по k элементов (0?k?n) называется любое подмножество данного множества, которое содержит k элементов.
Любые два сочетания отличаются друг от друга только составом элементов. Число сочетаний из n элементов по k обозначается символом и вычисляется по формуле:

Практический материал.
8.(6.1.20.) Составить различные сочетания по два элемента из элементов множества A={3,4,5} и подсчитать их число. (Ответ: 3.)

9. (6.1.25.) Группа туристов из 12 юношей и 7 девушек выбирает по жребию 5 человек для приготовления ужина. Сколько существует способов при которых в эту «пятерку» попадут:
а) одни девушки; б) 3 юноши и 2 девушки;
в) 1 юноша и 4 девушки; г) 5 юношей; д) туристы одного пола.
(Ответ: а) 21; б) 4620; в) 420; г) 792; д) 813.)

Теория. Перестановкой из n элементов называется размещение из n элементов по n элементов. Таким образом, указать ту или иную перестановку данного множества из n элементов значит выбрать определенный порядок этих элементов. Поэтому любые две перестановки отличаются друг от друга только порядком следования элементов.
Число перестановок из n элементов обозначается символом и вычисляется по формуле:

Практический материал.

10.(6.1.14.Л) Составить различные перестановки из элементов множества A={5;8;9}. (Ответ: 6)

11.(6.1.15.Л) Сколькими способами можно расставить на книжной полке десятитомник произведений Д. Лондона, располагая их:
а) в произвольном порядке;
б) так, чтобы 1, 5, 9 тома стояли рядом (в любом порядке);
в) так, чтобы 1, 2, 3 тома стояли рядом (в любом порядке).
(Ответ: а) 10! б) 8!?3! в) )

12. (1.6.16.Л.) В комнате имеется 7 стульев. Сколькими способами можно разместить на них 7 гостей? 3 гостя? (Ответ: 5040; 210)

Схема выбора с возвращением.
Теория. Если при упорядоченной выборке k элементов из n элементы возвращаются обратно, то полученные выборки представляют собой размещения с повторениями. Число всех размещений с повторениями из n элементов по k обозначается символом и вычисляется по формуле:

Если при выборке k элементов из n элементы возвращаются обратно без последующего упорядочивания (таким образом, одни и те же элементы могут выниматься по нескольку раз, т.е. повторяться), то полученные выборки есть сочетания с повторениями. Число всех сочетаний с повторениями из n элементов по k обозначается символом и вычисляется по формуле:

Практический материал.

13.(6.1.29.) Из элементов (цифр) 2, 4, 5 составить все размещения и сочетания с повторениями по два элемента. (Ответ: 9; 6)

14. (6.1.31.Л.) Пять человек вошли в лифт на 1-м этаже девятиэтажного дома. Сколькими способами пассажиры могут выйти из лифта на нужных этажах? (Ответ: )

15. (6.1.59.Л.) В кондитерской имеется 7 видов пирожных. Сколькими способами можно приобрести в ней: а) 3 пирожных одного вида; б) 5 пирожных? (Ответ: а) 7; б) 462)

Теория. Пусть в множестве из n элементов есть k различных типов элементов, при этом 1-й тип элементов повторяется раз, 2-й - раз, . . . , k-й - раз, причем . Тогда перестановки элементов данного множества представляют собой перестановки с повторениями.
Число перестановок с повторениями (иногда говорит о числе разбиений множества) из n элементов обозначается символом и вычисляется по формуле:

Практический материал.
16.(6.1.32.) Сколько различных «слов» (под «словом» понимается любая комбинация букв) можно составить, переставляя буквы в слове АГА? MISSISSIPPI?
Решение.
Вообще из трех букв можно составить различных трехбуквенных «слов». В слове АГА буква А повторяется, а перестановка одинаковых букв не меняет «слова». Поэтому число перестановок с повторениями меньше числа перестановок без повторений во столько раз, сколько можно переставлять повторяющиеся буквы. В данном слове две буквы (1-я и 3-я) повторяются; поэтому различных перестановок трехбуквенных «слов» из букв слова АГА можно составить столько: . Впрочем, ответ можно получить и проще: . По этой же формуле найдем число одиннадцатибуквенных «слов» при перестановке букв в слове MISSISSIPPI. Здесь (4 буквы S), (4 буквы I), , поэтому

17.(6.1.38.Л.) Сколько существует различных перестановок букв в слове ТРАКТАТ? А в «слове» АААУУАУУУУ? (Ответ: 420;210)

КОНСПЕКТ УРОКА
ПО МАТЕМАТИКЕ
3 класс

Плохотнюк Виктория Николаевна,

учитель начальных классов

МБОУ «СОШ № 6» г.Усинска

Республики Коми

ТЕМА: Повторение деления (прием вычисления частного)

ЗАДАЧИ:

    продолжить работу над приемом деления, основанном на оперировании конкретными предметами;

    закреплять название чисел при делении, умножении;

    развивать навык устного счета;

    продолжать работу над навыками взаимодействия

ХОД УРОКА:

Начинается урок.

Он пойдет ребятам впрок.

Постараюсь все понять,

Буду правильно решать.

I. А сейчас у нас не просто урок, а космический урок. Мы совершим путешествие к звездам. В полете мы повторим деление, вспомним, как называются числа при умножении, сложении, вычитании.

А чтобы полет прошел успешно надо внимательно слушать, думать, правильно считать.

Но для начала надо получить разрешение на взлет.

Итак: даем только ответ.

    Разность чисел 60 и 8 (52)

    1 слагаемое 32, 2 слагаемое 8 – сумма (40)

    96 уменьшите на 90 (6)

    Сумма чисел 16 и 12 (28)

    37 увеличить на 1 (38)

    В числе 27 содержится 3 дес и 7 ед? (2 д 7 е)

    Число 38 находиться в числовом ряду между числами 37 и 40? (37,39)

    7 дес. Это 70? Да

    5 дес. Это 15? Нет.

    Как называются числа при +/при –

Мы неплохо справились с работой, а скажите, какие действия повторили?

(+ и -)

Займите свои места, проверьте готовность к полету. Читаем.

Мы летим к другим планетам

Объявляем вам об этом.

II. Пока наша ракета набирает скорость, откройте бортовые журналы и запишите дату полета.

Мы уже на месте и прилетели к 1 звезде «Поспешайка». Здесь нас ждут заманчивые задания:

5 ,10,11,15,20

40,30, 19 ,20,80 какое число лишнее?

22,23, 42 ,25,26

40,42,44,46…

35,40,45,50… какое число следует дальше?

10,20,30,40…

А эту работу надо выполнить быстро и четко. Задание такое: решить и проверить.

38+27 52-29 63-44 51+29 91-55

Каким действием проверим +, -.

Ребята очень старались, мне понравилось, задерживаться здесь не будем, продолжим полет. Физминутка

Дружно встали раз, 2,3

Мы теперь богатыри

Мы ладонь к глазам приставим.

Ноги крепкие расставим.

Поворачивались вправо,

Оглядимся величаво,

И налево тоже надо.

Поглядеть из-под ладошек.

И направо и еще

Через правое плечо.

III. Мы и не заметили, как подлетели к звезде «Разделяй-ка». Давайте вспомним, как называются числа при делении?

    Как называется число, которое делим? (делимое)

    Как называется число, на которое делим? (делитель)

    Как называется результат деления? (частное)

Запишем в бортовой журнал: Делимое 10, делитель 2. Что нужно найти? (частное)

А частное будем искать при помощи рисунка.

Кто нарисует?

O O O O O O O O O O

(ракету →)

    по сколько кружочков группируем (по 2)

    ск. раз по 2 содержится в 10? (5 раз)

    Значит, чему равно частное? (5)

А сейчас осмотримся, посмотрите налево, направо, вверх. А что это с нашей ракетой?

По-моему она потеряла управление и срочно нужно произвести расчеты. Кто нам поможет? (карточки разложить у доски)

12:3 8:2 6:3

А вот это выражение сами:

12:2

Повторим.

    Как называется числа при делении.

    Что получается в результате деления?

(Упражнение сидя)

    Потянулись, подняли правое, левое плечо.

IV. Мы прилетели к звезде «Запасайка». Надо проверить наши запасы:

    В полет мы взяли 5 бутылок лимонада по 1 л в каждой. Сколько всего литров лимонада взяли? (10л)

    А еще взяли 3 ящика печенья по 2 кг в каждом. Сколько килограмм печенья взяли.

    Мы думали взять в полет 20 больших хрямзиков и 10 маленьких. Когда узнали, что это такое, все выбросили. Сколько хрямзиков выбросили?

Разделимся на экипажи. посмотрите какого цвета звезда у вас на парте?

Оранжевые

Займите свои места. Перед работой угадайте, что это?

Сидит дед 100 шуб одет

Кто его разденет, слезы проливает

Да, это лук. А вы знаете, что лук в Древней Руси считался лучшим средством от болезней? А в Древней Греции – священным растением. А в Германии цветками лука украшали героев. Берем его в полет?

А это что? Рос ребенок не знал пеленок,

Стал стариком

100 пеленок на нем.

Конечно, это капуста. Ее с давних времен использовали как средство от бессонницы и головной боли. Ее соком смазывали ранки.

Мы и капусту возьмем с собой?

А теперь приступаем к делу.

Время пошло.

    15луковиц посадили по 3 в ряд. Сколько рядов получилось?

    15 кочанов капусты посадили на 3 ряда поровну. Сколько кочанов в каждом ряду.

2)Дать решение.

    Что заметили?

(решение одно, а ищем разное)

Мы решали, мы решали

Что- то очень мы устали,

Мы сейчас потопаем

Ручками похлопаем

Раз – присядем

Быстро встанем

Улыбнемся

Тихо сядем.

А это что? К нам приближаются неопознанные объекты, чтобы избежать столкновения, надо срочно узнать их параметры.

∆  O

    Какие видели объекты?

    По каким признакам сгруппируем?

    по цвету

    по размеру

    по форме

Назовите их.

    А это еще что? Какие-то странные рожицы.

    Из каких геом. фигур состоят?

    Какая лишняя?

Очень хорошо.

Мы избежали столкновения, и наше путешествие подходит к концу. А чтобы благополучно вернуться назад, надо разгадать кроссворд.

1) Что получается при сложении? (сумма)

2) Как называется число, результат деления? (частное)

3)Он бывает прямым и острым? (угол)

4)Число, которое делят? (делимое)

5) Число, на которое делят? (делитель)

Очень плохая оценка? (единица)

7) Каким действием проверим «+» (вычитание)

Наш полет подошел к концу. Следим за указкой. Какое слово получилось. Молодцы.

Да, мы, конечно, молодцы.

    Что же сегодня повторяли?

    Что понравилось?

    Что показалось трудным?

    Какую оценку сами себе поставим?

А чтобы успешно на следующем уроке продолжить работу над делением и хорошо написать самостоятельную работу надо дома закрепить материал.

Запишем задание:

с.54 табл. №3.

Урок окончен.