Какой процесс лежит в основе регенерации тканей. Значение регенерации тканей. Разновидности репаративной регенерации. Морфаллаксис и эпиморфоз

Способность живых организмов к регенерации органов является одной из многих таинственных загадок биологии, которую человек уже давно пытается разгадать. Еще в 2005 году всем известный журнал Science опубликовал список 25 самых важных проблем науки, в которую входит проблема раскрытия загадки регенерации органов .

Пётр Гаряев. ‹Совершенно секретно» Биология молодости

Стволовые клетки – основа регенерации

В настоящее время ученым так и не удалось до конца понять - почему же одни живеые существа, лишаясь конечности, могут быстро ее восстановить, а другие лишены такой возможности. Весь на определенном этапе развития организм знает, как это сделать, но этот этап очень короткий – срок, начинающийся и сразу заканчивающийся, когда эмбрион только начинает развиваться. В настоящее время ученые всего мира пытаются найти ответ на вопрос: можно ли разбудить это «ценное» воспоминание в мозгу взрослого человека и заставить его снова работать.

Некоторые специалисты в сфере регенеративной медицины считают, что данную функцию регенерации можно восстановить с помощью . Данные клетки в организме взрослого человека содержатся в очень маленьком количестве и располагаются в нижнем отделе позвоночника рядом с коренным узлом. Это уникальные клетки, с их помощью зарождался, а затем строился и развивался организм будущего маленького человечка.

Первые восемь клеток, образовавшиеся в результате зачатия, оплодотворения яйцеклетки сперматозоидом – это первородные стволовые клетки. Ученые выяснили, чтобы активизировать воспроизводство данных стволовых клеток нужно запустить особое вихревое поле (Мерка-ба) . Именно оно будет стимулировать активное производство стволовых клеток. При активном производстве клеток организм человека начнет регенерацию. Это и есть заветная мечта ученых регенеративной медицины.

Повреждение спинного мозга, любого органа или конечности делают из здорового активного человека инвалида на всю оставшуюся жизнь. Полностью разгадав загадку регенерации органов, ученые смогут научиться помогать таким людям, «отращивая» новые здоровые органы. Также процесс регенерации способен значительно увеличить продолжительность жизни.

Регенерация органов и тканей: как это происходит?

Целительная иммунная система саламандры

Пытаясь раскрыть тайну , ученые пристально наблюдали за организмами, которые обладают данными способностями: головастики , ящерицы , моллюски , все ракообразные , амфибии , креветки .

Особенно из данной группы ученые выделяют саламандру . Данная особь способна регенерировать, и не один раз, головной и спинной , сердце, конечности и хвост. Именно данное земноводное специалисты в области регенеративной медицины всего мира считают идеальным образцом способности регенерации.

Данный процесс у саламандры очень точный. Она может восстановить конечность полностью, но если потеряна лишь часть, то восстанавливается именно та потерянная часть. В настоящий момент точно не известно сколько же раз саламандра может восстанавливаться. Стоит отметить, что отращенная в очередной раз конечность без патологий и отклонений. Секрет данного земноводного – иммунная система , именно она помогает восстановлению органов.

Ученые очень внимательно изучают данную иммунную систему на предмет копирования методики восстановления, но уже для человеческого организма. Но пока копирование не получается, несмотря на большое количество исследований саламандры. Лишь ученые Австралийского института регенеративной медицины заявляют, что, скорее всего им удалось обнаружить основополагающий фактор способности регенерирования саламандры.

  • Они утверждают, что в основе данной способности лежат клетки иммунной системы, которые предназначены для переваривания умерших клеток, грибков, бактерий, которые отторгнул организм. Ученые долго экспериментировали на саламандрах, живущих в лаборатории. Они искусственно очищали организм земноводных, тем самым «выключая» регенеративные способности. В результате на ранах просто образовывался рубец аналогичный человеческому рубцу, который появляется после серьезных травм;
  • Специалисты считают, что именно клетки иммунной системы создают особые химические вещества, которые создают основу регенеративного процесса. Скорее всего, химическое вещество воспроизводится непосредственно на поврежденном участке и начинает его активно восстанавливать;
  • Недавно австралийские ученые заявили, что готовят долгосрочное исследование иммунной системы человека и саламандры. Благодаря современной аппаратуре и высокому профессионализму ученых, скорее всего, в ближайшие годы будет выявлено, что именно помогает быстрой регенерации земноводных;
  • Также, попутно может быть сделано открытие в сфере косметологии, протезирования и трансплантологии относительно эффективного избавления от рубцов. Данная проблема также много лет не может решиться;
  • К сожалению, ни одно не обладает способностью к регенерации органов. Способность человека к регенерации можно активировать, лишь добавив в организм определенные специальные компоненты.

Исследования регенерации у млекопитающих

Однако есть специалисты, которые после долгих исследований и экспериментов, утверждают, что млекопитающие могут регенерировать кончик пальца. Данные выводы они сделали, работая с мышами . Но, степень регенерации очень ограничена. Если сравнивать лапку мыши и палец человека, то возможно отрастить утраченный фрагмент, не доходящий до места кутикулы. Если даже на миллиметр больше, то процесс регенерации уже невозможен.

Есть данные, что сообщество ученых их Японии и США смогли «разбудить» стволовые клетки мыши и отрастили большую часть конечности, равную длине среднего человеческого пальца. Они выяснили, что стволовые клетки расположены по всему телу млекопитаемого, они размножаются и становятся теми клетками, которые в данный момент наиболее нужны организму для благополучного функционирования.

Заключение

Ученые всего мира настойчиво работают, чтобы узнать с помощью чего организм человека может регенерировать органы. Если все же специалисты научатся «будить» стволовые клетки, то это будет одно из самых величайших открытий человечества. Данные знания сильно повлияют на работу абсолютно всех областей клинической медицины, позволив «заменять», в прямом смысле этого слова, негодные, мертвые органы на здоровые и эффективно восстанавливать поврежденные ткани.

В настоящее время все исследования и эксперименты проходят с обязательным участием млекопитающих и земноводных.

А вы знаете, что наше тело находится в процессе непрерывной регенерации тканей на клеточном уровне?

Способность живых организмов к регенерации тканей органов является одной из многих таинственных загадок биологии, которую человек уже давно пытается разгадать. Еще в 2005 г. известный журнал Science опубликовал список 25 самых важных проблем науки, в которую входит проблема раскрытия загадки регенерации органов.

РЕГЕНЕРАЦИЯ или восстановление организмом утраченных частей на той или иной стадии жизненного цикла. Она обычно происходит в случае повреждения или утраты какого-нибудь органа или части организма. Однако помимо этого в каждом организме на протяжении всей его жизни постоянно идут процессы восстановления и обновления. У человека, например, постоянно обновляется наружный слой кожи.

Но во время болезни дегенеративные процессы берут верх. И, к сожалению, лекарства, несмотря на видимость исцеления, скорее препятствует регенеративным процессам и целебным энергиям.

Но есть и хорошие новости:). Есть продукты, которые стимулируют регенеративные процессы в различных тканях нашего организма. И я нашла очень на мой взгляд интересную инфу о различных тканях нашего организма и продуктах, которые помогут их восстановить, если по тем или иным причинам дегенеративные процессы возобладают над регенерацией.

Как стимулировать регенерацию нервной ткани

Есть широкий спектр природных соединений с доказанными нервно-регенеративными эффектами. В исследовании 2010 г., опубликованном в журнале Rejuvenation Research , говорится о том, что сочетание черники, зеленого чая и карнозина помогают регенерации нейронов и стволовых клеток у животных с нейро-дегенеративными заболеваниями. Кроме того, доказано, что широкий круг природных соединений оказывает нервно-регенеративный эффект, включая:

  • Куркумин
  • Ежовик гребенчатый
  • Апигенин (соединение в овощах, таких как сельдерей)
  • Черника
  • Женьшень
  • Гиперзин
  • Натто
  • Шалфей краснокорневищный
  • Ресвератрол
  • Маточное молочко
  • Теанин
  • Ашваганда
  • Кофе (тригонеллин)

Существуют и другие соединения, которые стимулируют восстановление защитной оболочки вокруг аксонов нейронов, известных . Следует также отметить, что даже музыка и влюбленность были изучены, чтобы выявить возможность стимулировать нейрогенеза, регенерации и / или восстановления нейронов. И обнаружено, что самый широкий спектр терапевтических мероприятий могут быть использованы для улучшения здоровья.

Как помочь регенерации печени

Для регенерации печени используют следующие вещества:

  • Глицирризин
  • Карвакрол (летучее соединение в орегано)
  • Куркумин
  • Корейский женьшень
  • Ройбуш
  • Витамин Е

Помогаем регенерации бета-клеток

Экспериментально доказано, что следующие соединения способствуют регенерации продуцирующих инсулин бета-клеток, которые разрушены у страдающих инсулинозависимым сахарным диабетом. Если восстановить эти клетки, возможно (по крайней мере, теоретически) восстановить здоровье пациента до точки, когда ему больше не потребуется заменитель инсулина.

  • Джимнема лесная («разрушительница сахара»)
  • Калинджи («черный тмин»)
  • Витамин D
  • Куркумин
  • Аргинин
  • Авокадо
  • Берберин (содержится в горьких трав, таких как желтокорень и барбарис)
  • Горький огурец
  • Мангольд (зеленые листовые)
  • Кукурузные рыльца
  • Стевия
  • Сульфорафан (особенно концентрированы в брокколи)

Регенерация гормонов

Есть вещества, которые увеличивают способность эндокринных желез секретировать больше гормонов, и есть вещества, которые действительно регенерируют гормоны. Одним из этих веществ является витамин С. Мощный донор электронов, этот витамин помогает электронам восстановить форму и функцию эстрадиола (эстрогена, E2), прогестерона, тестостерона. В тандеме с пищевыми продуктами, которые способны поддерживать функцию желез, таких как яичники, витамин С может стать отличным дополнением или альтернативой заместительной гормональной терапии.

Регенерация сердечный клеток

Не так давно считалось, что сердечная ткань неспособна к регенерации. Новые экспериментальные исследования теперь показывают, что есть нейрокардиогенные вещества, регенерирующие ткани сердца:

  • Ресвератрол
  • Элеутерококк
  • Экстракт красного вина
  • Гравилата японский
  • N-ацетил-цистеин

Регенерация позвоночника

Куркумин и ресвератрол помогают при восстановлении после травмы спинного мозга.

Всем Красоты и Сияния!

Регенерация (тканей)

воспроизведение утерянных органов и тканей животными. Говоря вообще, можно принять, что чем выше организовано животное, тем слабее у него регенеративная способность. Простейшие восстановляют (регенерируют) любую часть своего тела, но при условии, чтобы регенерирующая часть клетки имела хотя бы часть ядра (макронуклеса); отрезки же, лишенные ядра, не регенерируют. Надо думать, что означенное явление стоит в связи с важной ролью клеточного ядра при усвоении пищи. Часть клетки, лишенная ядра, теряет способность усваивать пищевые вещества, а, следовательно, и расти. Точно так же кишечнополостные и многие черви одинаково обладают способностью восстановлять оба конца своего тела. Гидра и др. восстановляют как нижний слепой конец своего тела, так равно и верхний, несущий ротовое отверстие и щупальца. Турбеллярии, немертины, равно и более высоко организованные черви - как обыкновенный земляной червяк, восстановляют не только задний конец, но и передний, т. е. голову со всеми ее органами. Морские звезды и змеевики, у которых все пять лучей, составляющих их тело, построены одинаково, обладают высокой регенеративной способностью: каждый из лучей обладает способностью восстановлять недостающие. У более высоко стоящих форм, напр. у ракообразных, паукообразных, моллюсков, а также у многих позвоночных - регенеративная способность более ограничена и сводится лишь к восстановлению некоторых придатков тела. Раки и пауки - восстановляют оторванные конечности, моллюски тоже некоторые оторванные части (напр. сифоны), рыбы - непарные плавни, амфибии и ящерицы - оторванные конечности и хвост. Есть указание, что восстановление ноги наблюдалось у чижа, но это не проверено и вообще можно принять, что птицы и млекопитающие восстановляют при поранении лишь ткани, а не органы. Всего легче восстановляется мышечная и нервная ткань. Вообще же многие ткани как бы находятся в постоянном нормальном процессе Р.: так, роговой покров позвоночных отшелушивается на поверхности и образуется заново в глубине вследствие размножения более глубоко лежащих клеток. Иногда Р. делается нормальным периодическим явлением при известных отправлениях. Во время родов у высших млекопитающих каждый раз отпадает значительная часть или даже вся (у человека) слизистая оболочка матки и потом снова регенерирует. Однако означенное правило относительно ослабления регенеративной способности по мере поднятия вверх по животной лестнице при детальном его применении требует многих исключений: рыбы, напр., стоят ниже амфибий, а у них боковые плавни, соответствующие конечностям амфибий, не регенерируют, тогда как конечности амфибий регенерируют. Самый процесс Р. в большинстве случаев происходит таким образом, что утерянные тканевые элементы образуются на счет соответствующих тканей оставшихся частей: эпителий - на счет эпителия, соединительная ткань на счет соединительной ткани и т. д. Если же регенерируют целые органы, то в большинстве случаев они образуются на счет элементов того же эмбрионального пласта, на счет коего они развиваются у зародыша, причем при Р. органа наблюдается некоторое, хотя далеко не полное сходство с развитием его в зародышевом состоянии. Хотя в этом отношении существуют также исключения: так, хрусталик глаза амфибий развивается, как и у других позвоночных, из кожного (эктодермического слоя), а регенерирует при искусственном удалении на счет элементов радужины; но в других случаях, напр. у низших червей (турбелларий), наблюдалось и такое явление, что одна ткань (у турбеллярий паренхиматозная ткань, выполняющая промежутки между органами) восстановляет все недостающие органы, играя роль индифферентной регенеративной ткани. При Р. иногда происходит численное увеличение восстанавливающихся органов: так, давно было замечено, что при Р. конечности амфибий число пальцев иногда бывает более пяти, а ящерица образует иногда два хвоста вместо одного. Торнье показал, что если ящерице срезать хвост наискось, так, чтобы при этом был задет не один, а 2 или 3 позвонка, то у нее вырастает не один, а 2-3 хвоста, т. е. каждый пораненный позвонок образует хвост. Точно так же если отрезать лапку у тритона и зашить ранку лишь в ее средней части, так что вместо одной ранки образуется две, - то вырастают две лапки. Если срезать два правых и два левых пальца, а срединный не трогать, то с каждой стороны его вырастут не по 2, а по 4 пальца и получится 8-палая конечность. Иногда восстановляется орган не на том месте, где он был прежде, или даже такой орган, которого животное не имело. Такое явление названо гетероморфозом. Так, полипы вместо слепого конца (ноги) иногда восстанавливают другой рот с своим венчиком щупалец, и получается полип с двумя ртами и двумя венчиками щупалец. Восстановление переднего конца вместо заднего наблюдалось у турбеллярий. Точно так же у ракообразных, у которых сложные глаза сидят на стебельках, наблюдалось, что в случае удаления глаза вырастал усик с характерными чувствительными волосками и бывший прежде глазной нерв врастал в этот усик. В некоторых случаях подобного гетероморфоза, может быть, нужно видеть как бы возвращение к первобытному состоянию органа у предков данного животного. Во многих случаях регенеративная способность стоит в связи с способностью отбрасывать в момент опасности органы вследствие сильного конвульсивного сокращения мышц: рак отбрасывает таким образом клешни, будучи за них схвачен, ящерица - хвост, моллюск - сифон, а голотурии при раздражении - выбрасывают части кишечника и его придатков через задний проход или перешнуровываются на отдельные участки. Это явление получило название аутотомии и естественно сопровождается Р. утерянных частей.

В. М. Ш.


Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. - С.-Пб.: Брокгауз-Ефрон . 1890-1907 .

Смотреть что такое "Регенерация (тканей)" в других словарях:

    РЕГЕНЕРАЦИЯ - РЕГЕНЕРАЦИЯ, процесс образования нового, органа или ткани на месте удаленного тем или иным образом участка организма. Очень часто Р. определяется как процесс восстановления утраченного, т.. е. образование органа, подобного удаленному. Такое… … Большая медицинская энциклопедия

    - (поздн. лат., от лат. re опять, вновь, и genus, eris род, поколение). Возрождение, возобновление, восстановление того, что было разрушено. В фигуральном значении: перемена к лучшему. Словарь иностранных слов, вошедших в состав русского языка.… … Словарь иностранных слов русского языка

    - (от позднелат. regenerate возрождение, возобновление), восстановление организмом утраченных или повреждённых органов и тканей (собственно Р.), а также восстановление целого организма из его части (соматический эмбриогенез, вегетативное… … Биологический энциклопедический словарь

    Регенерация - * рэгенерацыя * regeneration 1. Образование отдельных тканей, органов или целых организмов в результате морфогенеза (см.) в культуре изолированных тканей () или клеток (). 2. Восстановление утраченных или поврежденных органов и тканей либо целого … Генетика. Энциклопедический словарь

    - (от позднелат. regeneratio возрождение возобновление), в биологии восстановление организмом утраченных или поврежденных органов и тканей, а также восстановление целого организма из его части. В большей степени присуща растениям и беспозвоночным… … Большой Энциклопедический словарь

    РЕГЕНЕРАЦИЯ (от позднелат. regeneratio возрождение, возобновление), в биологии восстановление организмом утраченных или поврежденных органов и тканей, а также восстановление целого организма из его части. В большей степени присуща растениям и… … Энциклопедический словарь

    РЕГЕНЕРАЦИЯ БИОГЕННЫХ ВЕЩЕСТВ - процесс возврата биогенных веществ в воду или почву из тканей отмерших организмов в результате жизнедеятельности сапрофитов. Экологический энциклопедический словарь. Кишинев: Главная редакция Молдавской советской энциклопедии. И.И. Дедю. 1989 … Экологический словарь

    Восстановление организмом утраченных частей на той или иной стадии жизненного цикла. Регенерация обычно происходит в случае повреждения или утраты какого нибудь органа или части организма. Однако помимо этого в каждом организме на протяжении всей … Энциклопедия Кольера

    I Регенерация (лат. regeneratio возрождение, возобновление) обновление в процессе жизнедеятельности структур организма (физиологическая регенерация) и восстановление тех из них, которые были утрачены в результате патологических процессов… … Медицинская энциклопедия

    - (от позднелат. regeneratio возрождение, возобновление) в биологии, восстановление организмом утраченных или поврежденных органов и тканей, а также восстановление целого организма из его части. Р. наблюдается в естественных условиях, а… … Большая советская энциклопедия

Книги

  • Регенерация - настоящее и будущее , П. Мэттсон. Эта книга рассказывает о восстановлении утраченных органов (регенерации), о медико-биологическом аспекте этой проблемы. Материал, представленный в книге, свидетельствует о том, что…

Общие сведения

Регенерация (от лат. regeneratio - возрождение) - восстановление (возмещение) структурных элементов ткани взамен погибших. В биологическом смысле регенерация представляет собой приспособительный процесс, выработанный в ходе эволюции и присущий всему живому. В жизнедеятельности организма каждое функциональное отправление требует затрат материального субстрата и его восстановления. Следовательно, при регенерации происходит самовоспроизведение живой материи, причем это самовоспроизведение живого отражает принцип ауторегуляции и автоматизации жизненных отправлений (Давыдовский И.В., 1969).

Регенераторное восстановление структуры может происходить на разных уровнях - молекулярном, субклеточном, клеточном, тканевом и органном, однако всегда речь идет о возмещении структуры, которая способна выполнять специализированную функцию. Регенерация - это восстановление как структуры, так и функции. Значение регенераторного процесса - в материальном обеспечении гомеостаза.

Восстановление структуры и функции может осуществляться с помощью клеточных или внутриклеточных гиперпластических процессов. На этом основании различают клеточную и внутриклеточную формы регенерации (Саркисов Д.С., 1977). Для клеточной формы регенерации характерно размножение клеток митотическим и амитотическим путем, для внутриклеточной формы, которая может быть органоидной и внутриорганоидной, - увеличение числа (гиперплазия) и размеров (гипертрофия) ультраструктур (ядра, ядрышек, митохондрий, рибосом, пластинчатого комплекса и т.д.) и их компонентов (см. рис. 5, 11, 15). Внутриклеточная форма регенерации является универсальной, так как она свойственна всем органам и тканям. Однако структурно-функциональная специализация органов и тканей в фило- и онтогенезе «отобрала» для одних преимущественно клеточнуую форму, для других - преимущественно или исключительно внутриклеточную, для третьих - в равной мере обе формы регенерации (табл. 5). Преобладание той или иной формы регенерации в определенных органах и тканях определяется их функциональным назначением, структурно-функциональной специализацией. Необходимость сохранения целостности покровов тела объясняет, например, преобладание клеточной формы регенерации эпителия как кожи, так и слизистых оболочек. Специализированная функция пирамидной клетки головного

мозга, как и мышечной клетки сердца, исключает возможность деления этих клеток и позволяет понять необходимость отбора в фило- и онтогенезе внутриклеточной регенерации как единственной формы восстановления данного субстрата.

Таблица 5. Формы регенерации в органах и тканях млекопитающих (по Саркисову Д.С., 1988)

Эти данные опровергают существовавшие до недавнего времени представления об утрате некоторыми органами и тканями млекопитающих способности к регенерации, о «плохо» и «хорошо» регенерирующих тканях человека, о том, что существует «закон обратной зависимости» между степенью дифференцировки тканей и способностью их к регенерации. В настоящее время установлено, что в ходе эволюции способность к регенерации в некоторых тканях и органах не исчезла, а приняла формы (клеточную или внутриклеточную), соответствующие их структурному и функциональному своеобразию (Саркисов Д.С., 1977). Таким образом, все ткани и органы обладают способностью к регенерации, различны лишь ее формы в зависимости от структурно-функциональной специализации ткани или органа.

Морфогенез регенераторного процесса складывается из двух фаз - пролиферации и дифференцировки. Особенно хорошо эти фазы выражены при клеточной форме регенерации. В фазу пролиферации размножаются молодые, недифференцированные клетки. Эти клетки называют камбиальными (от лат. cambium - обмен, смена), стволовыми клетками и клетками-предшественниками.

Для каждой ткани характерны свои камбиальные клетки, которые отличаются степенью пролиферативной активности и специализации, однако одна стволовая клетка может быть родоначальником нескольких видов

клеток (например, стволовая клетка кроветворной системы, лимфоидной ткани, некоторые клеточные представители соединительной ткани).

В фазу дифференцировки молодые клетки созревают, происходит их структурно-функциональная специализация. Та же смена гиперплазии ультраструктур их дифференцировкой (созреванием) лежит в основе механизма внутриклеточной регенерации.

Регуляция регенераторного процесса. Среди регуляторных механизмов регенерации различают гуморальные, иммунологические, нервные, функциональные.

Гуморальные механизмы реализуются как в клетках поврежденных органов и тканей (внутритканевые и внутриклеточные регуляторы), так и за их пределами (гормоны, поэтины, медиаторы, факторы роста и др.). К гуморальным регуляторам относят кейлоны (от греч. chalaino - ослаблять) - вещества, способные подавлять деление клеток и синтез ДНК; они обладают тканевой специфичностью. Иммунологические механизмы регуляции связаны с «регенерационной информацией», переносимой лимфоцитами. В связи с этим следует заметить, что механизмы иммунологического гомеостаза определяют и структурный гомеостаз. Нервные механизмы регенераторных процессов связаны прежде всего с трофической функцией нервной системы, а функциональные механизмы - с функциональным «запросом» органа, ткани, который рассматривается как стимул к регенерации.

Развитие регенераторного процесса во многом зависит от ряда общих и местных условий, или факторов. К общим следует отнести возраст, конституцию, характер питания, состояние обмена и кроветворения, к местным - состояние иннервации, крово- и лимфообращения ткани, пролиферативную активность ее клеток, характер патологического процесса.

Классификация. Различают три вида регенерации: физиологическую, репаративную и патологическую.

Физиологическая регенерация совершается в течение всей жизни и характеризуется постоянным обновлением клеток, волокнистых структур, основного вещества соединительной ткани. Нет таких структур, которые не подвергались бы физиологической регенерации. Там, где доминирует клеточная форма регенерации, имеет место обновление клеток. Так происходит постоянная смена покровного эпителия кожи и слизистых оболочек, секреторного эпителия экзокринных желез, клеток, выстилающих серозные и синовиальные оболочки, клеточных элементов соединительной ткани, эритроцитов, лейкоцитов и тромбоцитов крови и т.д. В тканях и органах, где клеточная форма регенерации утрачена, например в сердце, головном мозге, происходит обновление внутриклеточных структур. Наряду с обновлением клеток и субклеточных структур постоянно совершается биохимическая регенерация, т.е. обновление молекулярного состава всех компонентов тела.

Репаративная или восстановительная регенерация наблюдается при различных патологических процессах, ведущих к повреждению клеток и тка-

ней. Механизмы репаративной и физиологической регенерации едины, репаративная регенерация - это усиленная физиологическая регенерация. Однако в связи с тем, что репаративная регенерация побуждается патологическими процессами, она имеет качественные морфологические отличия от физиологической. Репаративная регенерация может быть полной и неполной.

Полная регенерация, или реституция, характеризуется возмещением дефекта тканью, которая идентична погибшей. Она развивается преимущественно в тканях, где преобладает клеточная регенерация. Так, в соединительной ткани, костях, коже и слизистых оболочках даже относительно крупные дефекты органа могут путем деления клеток замещаться тканью, идентичной погибшей. При неполной регенерации, или субституции, дефект замещается соединительной тканью, рубцом. Субституция характерна для органов и тканей, в которых преобладает внутриклеточная форма регенерации, либо она сочетается с клеточной регенерацией. Поскольку при регенерации происходит восстановление структуры, способной к выполнению специализированной функции, смысл неполной регенерации не в замещении дефекта рубцом, а в компенсаторной гиперплазии элементов оставшейся специализированной ткани, масса которой увеличивается, т.е. происходит гипертрофия ткани.

При неполной регенерации, т.е. заживлении ткани рубцом, возникает гипертрофия как выражение регенераторного процесса, поэтому ее называют регенерационной, в ней - биологический смысл репаративной регенерации. Регенераторная гипертрофия может осуществляться двумя путями - с помощью гиперплазии клеток или гиперплазии и гипертрофии клеточных ультраструктур, т.е. гипертрофии клеток.

Восстановление исходной массы органа и его функции за счет преимущественно гиперплазии клеток происходит при регенерационной гипертрофии печени, почек, поджелудочной железы, надпочечников, легких, селезенки и др. Регенерационная гипертрофия за счет гиперплазии клеточных ультраструктур характерна для миокарда, головного мозга, т.е. тех органов, где преобладает внутриклеточная форма регенерации. В миокарде, например, по периферии рубца, заместившего инфаркт, размеры мышечных волокон значительно увеличиваются, т.е. они гипертрофируются в связи с гиперплазией их субклеточных элементов (рис. 81). Оба пути регенерационной гипертрофии не исключают друг друга, а, наоборот, нередко сочетаются. Так, при регенерационной гипертрофии печени происходит не только увеличение числа клеток в сохранившейся после повреждения части органа, но и гипертрофия их, обусловленная гиперплазией ультраструктур. Нельзя исключить того, что в мышце сердца регенерационная гипертрофия может протекать не только в виде гипертрофии волокон, но и путем увеличения числа составляющих их мышечных клеток.

Восстановительный период обычно не ограничивается только тем, что в поврежденном органе развертывается репаративная регенерация. Если

Рис. 81. Регенерационная гипертрофия миокарда. По периферии рубца расположены гипертрофированные мышечные волокна

воздействие патогенного фактора прекращается до гибели клетки, происходит постепенное восстановление поврежденных органелл. Следовательно, проявления репаративной реакции должны быть расширены за счет включения восстановительных внутриклеточных процессов в дистрофически измененных органах. Общепринятое мнение о регенерации только как о завершающем этапе патологического процесса малооправданно. Репаративная регенерация не местная, а общая реакция организма, охватывающая различные органы, но реализующаяся в полной мере лишь в том или ином из них.

О патологической регенерации говорят в тех случаях, когда в результате тех или иных причин имеется извращение регенераторного процесса, нарушение смены фаз пролиферации

и дифференцировки. Патологическая регенерация проявляется в избыточном или недостаточном образовании регенерирующей ткани (гипер- или гипорегенерация), а также в превращении в ходе регенерации одного вида ткани в другой [метаплазия - см. Процессы приспособления (адаптации) и компенсации]. Примерами могут служить гиперпродукция соединительной ткани с образованием келоида, избыточная регенерация периферических нервов и избыточное образование костной мозоли при срастании перелома, вялое заживление ран и метаплазия эпителия в очаге хронического воспаления. Патологическая регенерация обычно развивается при нарушениях общих и местных условий регенерации (нарушение иннервации, белковое и витаминное голодание, хроническое воспаление и т.д.).

Регенерация отдельных тканей и органов

Репаративная регенерация крови отличается от физиологической прежде всего своей большей интенсивностью. При этом активный красный костный мозг появляется в длинных трубчатых костях на месте жирового костного мозга (миелоидное превращение жирового костного мозга). Жировые клетки вытесняются растущими островками кроветворной ткани, которая заполняет костномозговой канал и выглядит сочной, темнокрасной. Кроме того, кроветворение начинает происходить вне костного мозга - внекостномозговое, или экстрамедуллярное, кроветворение. Оча-

ги экстрамедуллярного (гетеротопического) кроветворения в результате выселения из костного мозга стволовых клеток появляются во многих органах и тканях - селезенке, печени, лимфатических узлах, слизистых оболочках, жировой клетчатке и т.д.

Регенерация крови может быть резко угнетена (например, при лучевой болезни, апластической анемии, алейкии, агранулоцитозе) или извращена (например, при злокачественной анемии, полицитемии, лейкозе). В кровь при этом поступают незрелые, функционально неполноценные и быстро разрушающиеся форменные элементы. В таких случаях говорят о патологической регенерации крови.

Репаративные возможности органов кроветворной и иммунокомпетентной системы неоднозначны. Костный мозг обладает очень высокими пластическими свойствами и может восстанавливаться даже при значительных повреждениях. Лимфатические узлы хорошо регенерируют только в тех случаях, когда сохраняются связи приносящих и выносящих лимфатических сосудов с окружающей их соединительной тканью. Регенерация ткани селезенки при повреждении бывает, как правило, неполной, погибшая ткань замещается рубцом.

Регенерация кровеносных и лимфатических сосудов протекает неоднозначно в зависимости от их калибра.

Микрососуды обладают большей способностью регенерировать, чем крупные сосуды. Новообразование микрососудов может происходить путем почкования или аутогенно. При регенерации сосудов путем почкования (рис. 82) в их стенке появляются боковые выпячивания за счет усиленно делящихся эндотелиальных клеток (ангиобласты). Образуются тяжи из эндотелия, в которых возникают просветы и в них поступает кровь или лимфа из «материнского» сосуда. Другие элементы: сосудистой стенки образуются за счет дифференцировки эндотелия и окружающих сосуд соединительнотканных клеток, В сосудистую стенку врастают нервные волокна из предсуществующих нервов. Аутогенное новообразование сосудов состоит в том, что в соединительной ткани появляются очаги недифференцированных клеток. В этих очагах возникают щели, в которые открываются предсуществующие капилляры и изливается кровь. Молодые клетки соединительной ткани, дифференцируясь, образуют эндотелиальную выстилку и другие элементы стенки сосуда.

Рис. 82. Регенерация сосудов путем почкования

Крупные сосуды не обладают достаточными пластическими свойствами. Поэтому при повреждении их стенки восстанавливаются лишь структуры внутренней оболочки, ее эндотелиальная выстилка; элементы средней и наружной оболочек обычно замещаются соединительной тканью, что ведет нередко к сужению или облитерации просвета сосуда.

Регенерация соединительной ткани начинается с пролиферации молодых мезенхимальных элементов и новообразования микрососудов. Образуется молодая, богатая клетками и тонкостенными сосудами соединительная ткань, которая имеет характерный вид. Это - сочная темнокрасная ткань с зернистой, как бы усыпанной крупными гранулами поверхностью, что явилось основанием назвать ее грануляционной тканью. Гранулы представляют собой выступающие над поверхностью петли новообразованных тонкостенных сосудов, которые составляют основу грануляционной ткани. Между сосудами много недифференцированных лимфоцитоподобных клеток соединительной ткани, лейкоцитов, плазматических клеток и лаброцитов (рис. 83). В дальнейшем происходит созревание грануляционной ткани, в основе которой лежит дифференцировка клеточных элементов, волокнистых структур, а также сосудов. Число гематогенных элементов уменьшается, а фибробластов - увеличивается. В связи с синтезом фибробластами коллагена в межклеточных пространствах образуются аргирофильные (см. рис. 83), а затем и коллагеновые волокна. Синтез фибробластами гликозаминогликанов служит образованию

основного вещества соединительной ткани. По мере созревания фибробластов количество коллагеновых волокон увеличивается, они группируются в пучки; одновременно уменьшается количество сосудов, они дифференцируются в артерии и вены. Созревание грануляционной ткани завершается образованием грубоволокнистой рубцовой ткани.

Новообразование соединительной ткани происходит не только при ее повреждении, но и при неполной регенерации других тканей, а также при организации (инкапсуляции), заживлении ран, продуктивном воспалении.

Созревание грануляционной ткани может иметь те или иные отклонения. Воспаление, развивающееся в грануляционной ткани, приводит к задержке ее созревания,

Рис. 83. Грануляционная ткань. Между тонкостенными сосудами много недифференцированных клеток соединительной ткани и аргирофильных волокон. Импрегнация серебром

а чрезмерная синтетическая активность фибробластов - к избыточному образованию коллагеновых волокон с последующим резко выраженным их гиалинозом. В таких случаях возникает рубцовая ткань в виде опухолевидного образования синюшно-красного цвета, которая возвышается над поверхностью кожи в виде келоида. Келоидные рубцы образуются после различных травматических поражений кожи, особенно после ожогов.

Регенерация жировой ткани происходит за счет новообразования соединительнотканных клеток, которые превращаются в жировые (адипозоциты) путем накопления в цитоплазме липидов. Жировые клетки складываются в дольки, между которыми располагаются соединительнотканные прослойки с сосудами и нервами. Регенерация жировой ткани может происходить также из ядросодержащих остатков цитоплазмы жировых клеток.

Регенерация костной ткани при переломе костей в значительной мере зависит от степени разрушения кости, правильной репозиции костных отломков, местных условий (состояние кровообращения, воспаление и т.д.). При неосложненном костном переломе, когда костные отломки неподвижны, может происходить первичное костное сращение (рис. 84). Оно начинается с врастания в область дефекта и гематомы между отломками кости молодых мезенхимальных элементов и сосудов. Возникает так называемая предварительная соединительнотканная мозоль, в которой сразу же начинается образование кости. Оно связано с активацией и пролиферацией остеобластов в зоне повреждения, но прежде всего в периостате и эндостате. В остеогенной фиброретикулярной ткани появляются малообызвествленные костные балочки, число которых нарастает.

Образуется предварительная костная мозоль. В дальнейшем она созревает и превращается в зрелую пластинчатую кость - так образуется

Рис. 84. Первичное костное сращение. Интермедиарная костная мозоль (показана стрелкой), спаивающая отломки кости (по Г.И. Лаврищевой)

окончательная костная мозоль, которая по своему строению отличается от костной ткани лишь беспорядочным расположением костных перекладин. После того как кость начинает выполнять свою функцию и появляется статическая нагрузка, вновь образованная ткань с помощью остеокластов и остеобластов подвергается перестройке, появляется костный мозг, восстанавливаются васкуляризация и иннервация. При нарушении местных условий регенерации кости (расстройство кровообращения), подвижности отломков, обширных диафизарных переломах происходит вторичное костное сращение (рис. 85). Для этого вида костного сращения характерно образование между костными отломками сначала хрящевой ткани, на основе которой строится костная ткань. Поэтому при вторичном костном сращении говорят о предварительной костно-хрящевой мозоли, которая со временем превращается в зрелую кость. Вторичное костное сращение по сравнению с первичным встречается значительно чаще и занимает больше времени.

При неблагоприятных условиях регенерация костной ткани может быть нарушена. Так, при инфицировании раны регенерация кости задерживается. Костные осколки, которые при нормальном течении регенераторного процесса выполняют функцию каркаса для новообразованной костной ткани, в условиях нагноения раны поддерживают воспаление, что тормозит регенерацию. Иногда первичная костно-хрящевая мозоль не дифференцируется в костную. В этих случаях концы сломанной кости остаются подвижными, образуется ложный сустав. Избыточная продукция костной ткани в ходе регенерации приводит к появлению костных выростов - экзостозов.

Регенерация хрящевой ткани в отличие от костной происходит обычно неполно. Лишь небольшие дефекты ее могут замещаться новообразованной тканью за счет камбиальных элементов надхрящницы - хондробластов. Эти клетки создают основное вещество хряща, затем превращаются в зрелые хрящевые клетки. Крупные дефекты хряща замещаются рубцовой тканью.

Регенерация мышечной ткани, ее возможности и формы различны в зависимости от вида этой ткани. Гладкие мьшщы, клетки которых обладают способностью к митозу и амитозу, при незначительных дефектах могут регенерировать достаточно полно. Значительные участки повреждения гладких мышц замещаются рубцом, при этом сохранившиеся мышечные волокна подвергаются гипертрофии. Новообразование гладких мышечных волокон может происходить путем превращения (метаплазии) элементов соединительной ткани. Так образуются пучки гладких мышечных волокон в плевральных спайках, в подвергающихся организации тромбах, в сосудах при их дифференцировке.

Поперечнополосатые мышцы регенерируют лишь при сохранении сарколеммы. Внутри трубок из сарколеммы осуществляется регенерация ее органелл, в результате чего появляются клетки, называемые миобластами. Они вытягиваются, число ядер в них увеличивается, в саркоплазме

Рис. 85. Вторичное костное сращение (по Г.И. Лаврищевой):

а - костно-хрящевая периостальная мозоль; участок костной ткани среди хрящевой (микроскопическая картина); б - периостальная костно-хрящевая мозоль (гистотопограмма через 2 мес после операции): 1 - костная часть; 2 - хрящевая часть; 3 - отломки кости; в - периостальная мозоль, спаивающая смещенные отломки кости

дифференцируются миофибриллы, и трубки сарколеммы превращаются в поперечнополосатые мышечные волокна. Регенерация скелетных мышц может быть связана и с клетками-сателлитами, которые располагаются под сарколеммой, т.е. внутри мышечного волокна, и являются камбиальными. В случае травмы клетки-сателлиты начинают усиленно делиться, затем подвергаются дифференцировке и обеспечивают восстановление мышечных волокон. Если при повреждении мышцы целость волокон нарушается, то на концах их разрывов возникают колбообразные выбухания, которые содержат большое число ядер и называются мышечными почками. При этом восстановления непрерывности волокон не происходит. Место разрыва заполняется грануляционной тканью, превращающейся в рубец (мышечная мозоль). Регенерация мышцы сердца при ее повреждении, как и при повреждении поперечнополосатой мускулатуры, заканчивается рубцеванием дефекта. Однако в сохранившихся мышечных волокнах происходит интенсивная гиперплазия ультраструктур, что ведет к гипертрофии волокон и восстановлению функции органа (см. рис. 81).

Регенерация эпителия осуществляется в большинстве случаев достаточно полно, так как он обладает высокой регенераторной способностью. Особенно хорошо регенерирует покровный эпителий. Восстановление многослойного плоского ороговевающего эпителия возможно даже при довольно крупных дефектах кожи. При регенерации эпидермиса в краях дефекта происходит усиленное размножение клеток зародышевого (камбиального), росткового (мальпигиева) слоя. Образующиеся эпителиальные клетки сначала покрывают дефект одним слоем. В дальнейшем пласт эпителия становится многослойным, клетки его дифференцируются, и он приобретает все признаки эпидермиса, включающего в себя ростковый, зернистый блестящий (на подошвах и ладонной поверхности кистей) и роговой слои. При нарушении регенерации эпителия кожи образуются незаживающие язвы, нередко с разрастанием в их краях атипичного эпителия, что может послужить основой для развития рака кожи.

Покровный эпителий слизистых оболочек (многослойный плоский неороговевающий, переходный, однослойный призматический и многоядерный мерцательный) регенерирует таким же образом, как и многослойный плоский ороговевающий. Дефект слизистой оболочки восстанавливается за счет пролиферации клеток, выстилающих крипты и выводные протоки желез. Недифференцированные уплощенные клетки эпителия сначала покрывают дефект тонким слоем (рис. 86), затем клетки принимают форму, свойственную клеточным структурам соответствующей эпителиальной выстилки. Параллельно частично или полностью восстанавливаются и железы слизистой оболочки (например, трубчатые железы кишки, железы эндометрия).

Регенерация мезотелия брюшины, плевры и околосердечной сумки осуществляется путем деления сохранившихся клеток. На поверхности дефекта появляются сравнительно крупные кубические клетки, которые затем уплощаются. При небольших дефектах мезотелиальная выстилка восстанавливается быстро и полно.

Важное значение для восстановления покровного эпителия и мезотелия имеет состояние подлежащей соединительной ткани, так как эпителизация любого дефекта возможна лишь после заполнения его грануляционной тканью.

Регенерация специализированного эпителия органов (печени, поджелудочной железы, почек, желез внутренней секреции, легочных альвеол) осуществляется по типу регенерационной гипертрофии: в участках повреждения ткань замещается рубцом, а по периферии его происходят гиперплазия и гипертрофия клеток паренхимы. В печени участок некроза всегда подвергается рубцеванию, однако в остальной части органа происходит интенсивное новообразование клеток, а также гиперплазия внутриклеточных стуктур, что сопровождается их гипертрофией. В результате этого исходная масса и функция органа быстро восстанавливаются. Регенераторные возможности печени почти безграничны. В поджелудочной железе регенераторные процессы хорошо выражены как в экзокринных отделах, так и в панкреатических островках, причем эпителий экзокринных желез становится источником восстановления островков. В почках при некрозе эпителия канальцев происходит размножение сохранившихся нефроцитов и восстановление канальцев, однако лишь при сохранении тубулярной базальной мембраны. При ее разрушении (тубулорексис) эпителий не восстанавливается и каналец замещается соединительной тканью. Не восстанавливается погибший канальцевый эпителий и в том случае, когда одновременно с канальцем погибает сосудистый клубочек. При этом на месте погибшего нефрона разрастается рубцовая соединительная ткань, а окружающие нефроны подвергаются регенерационной гипертрофии. В железах внутренней секреции восстановительные процессы также представлены неполной регенерацией. В легком после удаления отдельных долей в оставшейся части происходит гипертрофия и гиперплазия тканевых элементов. Регенерация специализированного эпителия органов может протекать атипично, что ведет к разрастанию соединительной ткани, структурной перестройке и деформации органов; в таких случаях говорят о циррозе (цирроз печени, нефроцирроз, пневмоцирроз).

Регенерация разных отделов нервной системы происходит неоднозначно. В головном и спинном мозге новообразования ганглиозных клеток не про-

Рис. 86. Регенерация эпителия в дне хронической язвы желудка

исходит и при разрушении их восстановление функции возможно лишь за счет внутриклеточной регенерации сохранившихся клеток. Невроглии, особенно микроглии, свойственна клеточная форма регенерации, поэтому дефекты ткани головного и спинного мозга обычно заполняются пролиферирующими клетками невроглии - возникают так называемые глиальные (глиозные) рубцы. При повреждении вегетативных узлов наряду с гиперплазией ультраструктур клеток происходит и их новообразование. При нарушении целости периферического нерва регенерация происходит за счет центрального отрезка, сохранившего связь с клеткой, в то время как периферический отрезок погибает. Размножающиеся клетки шванновской оболочки погибшего периферического отрезка нерва располагаются вдоль него и образуют футляр - так называемый бюнгнеровский тяж, в который врастают регенерирующие осевые цилиндры из проксимального отрезка. Регенерация нервных волокон завершается их миелинизацией и восстановлением нервных окончаний. Регенерационная гиперплазия рецепторов, перицеллюлярных синаптических приборов и эффекторов иногда сопровождается гипертрофией их концевых аппаратов. Если регенерация нерва в силу тех или иных причин нарушается (значительное расхождение частей нерва, развитие воспалительного процесса), то в месте его перерыва образуется рубец, в котором беспорядочно располагаются регенерировавшие осевые цилиндры проксимального отрезка нерва. Аналогичные разрастания возникают на концах перерезанных нервов в культе конечности после ее ампутации. Такие разрастания, образованные нервными волокнами и фиброзной тканью, называются ампутационными невромами.

Заживление ран

Заживление ран протекает по законам репаративной регенерации. Темпы заживления ран, его исходы зависят от степени и глубины раневого повреждения, структурных особенностей органа, общего состояния организма, применяемых методов лечения. По И.В. Давыдовскому, выделяют следующие виды заживления ран: 1) непосредственное закрытие дефекта эпителиального покрова; 2) заживление под струпом; 3) заживление раны первичным натяжением; 4) заживление раны вторичным натяжением, или заживление раны через нагноение.

Непосредственное закрытие дефекта эпителиального покрова - это простейшее заживление, заключающееся в наползании эпителия нд поверхностный дефект и закрытии его эпителиальным слоем. Наблюдаемое на роговице, слизистых оболочках заживление под струпом касается мелких дефектов, на поверхности которых быстро возникает подсыхающая корочка (струп) из свернувшейся крови и лимфы; эпидермис восстанавливается под корочкой, которая отпадает через 3-5 сут после ранения.

Заживление первичным натяжением (per rimamm intentionem) наблюдается в ранах с повреждением не только кожи, но и подлежащей ткани,

причем края раны ровные. Рана заполняется свертками излившейся крови, что предохраняет края раны от дегидратации и инфекции. Под влиянием протеолитических ферментов неитрофилов происходит частичный лизис свертка крови, тканевого детрита. Нейтрофилы погибают, на смену им приходят макрофаги, которые фагоцитируют эритроциты, остатки поврежденной ткани; в краях раны обнаруживается гемосидерин. Часть содержимого раны удаляется в первый день ранения вместе с экссудатом самостоятельно или при обработке раны - первичное очищение. На 2-3-и сутки в краях раны появляются растущие навстречу друг другу фибробласты и новообразованные капилляры, появляется грануляционная ткань, пласт которой при первичном натяжении не достигает больших размеров. К 10-15-м суткам она полностью созревает, раневой дефект эпителизируется и рана заживает нежным рубчиком. В хирургической ране заживление первичным натяжением ускоряется в связи с тем, что ее края стягиваются нитями шелка или кетгута, вокруг которых скапливаются рассасывающие их гигантские клетки инородных тел, не мешающие заживлению.

Заживление вторичным натяжением (per secundam intentionem), или заживление через нагноение (или заживление посредством гранулирования - per granulationem), наблюдается обычно при обширных ранениях, сопровождающихся размозжением и омертвением тканей, проникновении в рану инородных тел, микробов. На месте раны возникают кровоизлияния, травматический отек краев раны, быстро появляются признаки демаркационного гнойного воспаления на границе с омертвевшей тканью, расплавление некротических масс. В течение первых 5-6 сут происходит отторжение некротических масс - вторичное очищение раны, и в краях раны начинает развиваться грануляционная ткань. Грануляционная ткань, выполняющая рану, состоит из 6 переходящих друг в друга слоев (Аничков Н.Н., 1951): поверхностный лейкоцитарно-некротический слой; поверхностный слой сосудистых петель, слой вертикальных сосудов, созревающий слой, слой горизонально расположенных фибробластов, фиброзный слой. Созревание грануляционной ткани при заживлении раны вторичным натяжением сопровождается регенерацией эпителия. Однако при этом виде заживления раны на месте ее всегда образуется рубец.